IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006751.html
   My bibliography  Save this article

Contrastive machine learning reveals in EEG resting-state network salient features specific to autism spectrum disorder

Author

Listed:
  • Kabir, Muhammad Salman
  • Kurkin, Semen
  • Portnova, Galina
  • Martynova, Olga
  • Wang, Zhen
  • Hramov, Alexander

Abstract

We explore the potential of the contrastive variational autoencoder to detect latent disorder-specific patterns in the network, analyzing functional brain networks in autistic individuals as the case. Autism spectrum disorder has long troubled medical practitioners, neurologists, and researchers. It is due to its extremely variable nature, both neurologically and behaviorally. Though machine learning has been in use to automate autism diagnosis, little has been done to delve into its intricacies. Here, we attempt to understand the neural mechanisms of autism spectrum disorder using contrastive variational autoencoder in conjunction with feature engineering. Our proposed methodology results in a physiologically interpretable classifier with a remarkable F1-score (up to 95%) and reveals a weak frontal lobe functional connectivity in the alpha band for children with autism spectrum disorder. Our study suggests an increased focus on efficient frontal lobe EEG sampling. Additionally, it highlights the importance of the proposed pipeline for understanding the underlying neural abnormalities in autism over the traditional machine learning pipeline. Thus, the obtained results have proven a contrastive variational autoencoder to be a promising approach for discovering latent patterns and features in complex networks.

Suggested Citation

  • Kabir, Muhammad Salman & Kurkin, Semen & Portnova, Galina & Martynova, Olga & Wang, Zhen & Hramov, Alexander, 2024. "Contrastive machine learning reveals in EEG resting-state network salient features specific to autism spectrum disorder," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006751
    DOI: 10.1016/j.chaos.2024.115123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
    2. Pitsik, Elena N. & Maximenko, Vladimir A. & Kurkin, Semen A. & Sergeev, Alexander P. & Stoyanov, Drozdstoy & Paunova, Rositsa & Kandilarova, Sevdalina & Simeonova, Denitsa & Hramov, Alexander E., 2023. "The topology of fMRI-based networks defines the performance of a graph neural network for the classification of patients with major depressive disorder," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Drozdstoy Stoyanov & Vladimir Khorev & Rositsa Paunova & Sevdalina Kandilarova & Denitsa Simeonova & Artem Badarin & Alexander Hramov & Semen Kurkin, 2022. "Resting-State Functional Connectivity Impairment in Patients with Major Depressive Episode," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    4. Abubakar Abid & Martin J. Zhang & Vivek K. Bagaria & James Zou, 2018. "Exploring patterns enriched in a dataset with contrastive principal component analysis," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleg E. Karpov & Elena N. Pitsik & Semen A. Kurkin & Vladimir A. Maksimenko & Alexander V. Gusev & Natali N. Shusharina & Alexander E. Hramov, 2023. "Analysis of Publication Activity and Research Trends in the Field of AI Medical Applications: Network Approach," IJERPH, MDPI, vol. 20(7), pages 1-17, March.
    2. Alharbi, Njud S. & Bekiros, Stelios & Jahanshahi, Hadi & Mou, Jun & Yao, Qijia, 2024. "Spatiotemporal wavelet-domain neuroimaging of chaotic EEG seizure signals in epilepsy diagnosis and prognosis with the use of graph convolutional LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Muhammad Umair Khan & Mehdi Hosseinzadeh & Amir Mosavi, 2022. "An Intersection-Based Routing Scheme Using Q-Learning in Vehicular Ad Hoc Networks for Traffic Management in the Intelligent Transportation System," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    4. Pitsik, Elena N. & Maximenko, Vladimir A. & Kurkin, Semen A. & Sergeev, Alexander P. & Stoyanov, Drozdstoy & Paunova, Rositsa & Kandilarova, Sevdalina & Simeonova, Denitsa & Hramov, Alexander E., 2023. "The topology of fMRI-based networks defines the performance of a graph neural network for the classification of patients with major depressive disorder," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    6. Guo, Lei & Liu, Chengjun & Wu, Youxi & Xu, Guizhi, 2023. "fMRI-based spiking neural network verified by anti-damage capabilities under random attacks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Jan Lansky & Saqib Ali & Amir Masoud Rahmani & Mohammad Sadegh Yousefpoor & Efat Yousefpoor & Faheem Khan & Mehdi Hosseinzadeh, 2022. "Reinforcement Learning-Based Routing Protocols in Flying Ad Hoc Networks (FANET): A Review," Mathematics, MDPI, vol. 10(16), pages 1-60, August.
    8. Ben-Loghfyry, Anouar & Charkaoui, Abderrahim, 2023. "Regularized Perona & Malik model involving Caputo time-fractional derivative with application to image denoising," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Sheng Zhang & Xinyuan Xie & Haibin Qu, 2023. "A data-driven workflow for evaporation performance degradation analysis: a full-scale case study in the herbal medicine manufacturing industry," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 651-668, February.
    10. Anna Boronina & Vladimir Maksimenko & Alexander E. Hramov, 2023. "Convolutional Neural Network Outperforms Graph Neural Network on the Spatially Variant Graph Data," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
    11. Eugenio Vera-Salmerón & Carmen Domínguez-Nogueira & José L. Romero-Béjar & José A. Sáez & Emilio Mota-Romero, 2022. "Decision-Tree-Based Approach for Pressure Ulcer Risk Assessment in Immobilized Patients," IJERPH, MDPI, vol. 19(18), pages 1-9, September.
    12. Amir Masoud Rahmani & Rizwan Ali Naqvi & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Omed Hassan Ahmed & Mehdi Hosseinzadeh & Kamran Siddique, 2022. "A Q-Learning and Fuzzy Logic-Based Hierarchical Routing Scheme in the Intelligent Transportation System for Smart Cities," Mathematics, MDPI, vol. 10(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.