IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004193.html
   My bibliography  Save this article

Analysis for a model incorporating γ−secretase inhibitor to explore the mechanism of ‘Amyloid-β rise’

Author

Listed:
  • Zhang, Yongxin
  • Dong, Mingyan
  • Li, Bai-Lian
  • Sun, Gui-Quan

Abstract

The abnormal accumulation of amyloid-β (Aβ) is a key factor in the advancement of Alzheimer’s disease (AD), prompting the development of numerous strategies to reduce Aβ levels in the brain. Aβ is produced through the hydrolysis of amyloid precursor protein (APP), beginning with its cleavage by β-secretase to yield a C-terminal fragment, C99, which is further processed by γ−secretase to release Aβ. The crucial role of γ−secretase in Aβ synthesis has led to the creation of various γ−secretase inhibitors aimed at regulating Aβ concentrations. Nonetheless, experimental observations have reported a paradoxical ‘Aβ rise’ phenomenon, where lower concentrations of γ−secretase inhibitor paradoxically lead to increased Aβ levels, thereby complicating the development of these inhibitors. To elucidate the underlying mechanisms of ‘Aβ rise’, we constructed and analyzed a mathematical model incorporating γ−secretase inhibitor. Our analysis reveals bistable behavior driven by saddle–node bifurcation within the model. Through comprehensive analysis, we identified the conditions precipitating ‘Aβ rise’ and discovered that varying concentrations of γ−secretase inhibitor result in three distinct Aβ trends: (i) a consistent decrease, (ii) an initial increase followed by a decrease (‘Aβ rise’), and (iii) a decrease, subsequent increase, and final decrease. These trends are consistent with empirical findings. Our study further reveals that the emergence of ‘Aβ rise’ is primarily attributed to both lower η cleaving rate for APP and degradation rate of C99. Therefore, inhibiting ‘Aβ rise’ can be achieved by enhancing the η cleaving rate for APP and degradation rate of C99. These findings give new insights into the underlying mechanism of ‘Aβ rise’ and potential therapeutic strategies for treating AD.

Suggested Citation

  • Zhang, Yongxin & Dong, Mingyan & Li, Bai-Lian & Sun, Gui-Quan, 2024. "Analysis for a model incorporating γ−secretase inhibitor to explore the mechanism of ‘Amyloid-β rise’," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004193
    DOI: 10.1016/j.chaos.2024.114867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thorlakur Jonsson & Jasvinder K. Atwal & Stacy Steinberg & Jon Snaedal & Palmi V. Jonsson & Sigurbjorn Bjornsson & Hreinn Stefansson & Patrick Sulem & Daniel Gudbjartsson & Janice Maloney & Kwame Hoyt, 2012. "A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline," Nature, Nature, vol. 488(7409), pages 96-99, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanitha Nithianandam & Hassan Bukhari & Matthew J. Leventhal & Rachel A. Battaglia & Xianjun Dong & Ernest Fraenkel & Mel B. Feany, 2023. "Integrative analysis reveals a conserved role for the amyloid precursor protein in proteostasis during aging," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Snaedis Kristmundsdottir & Hakon Jonsson & Marteinn T. Hardarson & Gunnar Palsson & Doruk Beyter & Hannes P. Eggertsson & Arnaldur Gylfason & Gardar Sveinbjornsson & Guillaume Holley & Olafur A. Stefa, 2023. "Sequence variants affecting the genome-wide rate of germline microsatellite mutations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.