IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics0960077924003667.html
   My bibliography  Save this article

Dynamic event-triggered adaptive tracking control for stochastic nonlinear systems with deferred time-varying constraints

Author

Listed:
  • Wang, Dong-Mei
  • Han, Yu-Qun
  • Lu, Li-Ting
  • Zhu, Shan-Liang

Abstract

This article investigates the problem of adaptive tracking control for stochastic nonlinear systems with deferred state constraints. The novel unified universal barrier function (UUBF) and deferred funnel error transformation are developed to handle various state constraints and adjust the tracking error more precisely, respectively. Multi-dimensional Taylor network (MTN) and dynamic event-triggered mechanism (DETM) are employed to design controller in the backstepping process, which can achieve full-state constraints and the tracking control after the preassigned time while conserving more communication resources. Finally, two simulation examples are presented to verify the effectiveness of the proposed control scheme.

Suggested Citation

  • Wang, Dong-Mei & Han, Yu-Qun & Lu, Li-Ting & Zhu, Shan-Liang, 2024. "Dynamic event-triggered adaptive tracking control for stochastic nonlinear systems with deferred time-varying constraints," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003667
    DOI: 10.1016/j.chaos.2024.114814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Yingying & Li, Jing & Li, Xiaobo & Wu, Shuiyan, 2023. "Dynamic event-triggered adaptive control for uncertain stochastic nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Fudong & Chen, YangQuan, 2024. "Event-triggered control for boundary controlled time-fractional diffusion systems with spatially-varying coefficients," Applied Mathematics and Computation, Elsevier, vol. 478(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.