IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v182y2024ics096007792400328x.html
   My bibliography  Save this article

Correlation-enhanced viable core in metabolic networks

Author

Listed:
  • Lee, Mi Jin
  • Yi, Sudo
  • Lee, Deok-Sun

Abstract

Cellular ingredient concentrations can be stabilized by adjusting generation and consumption rates through multiple pathways. To explore the portion of cellular metabolism equipped with multiple pathways, we categorize individual metabolic reactions and compounds as viable or inviable: A compound is viable if processed by two or more reactions, and a reaction is viable if all of its substrates and products are viable. Using this classification, we identify the maximal subnetwork of viable nodes, referred to as the viable core, in bipartite metabolic networks across thousands of species. The obtained viable cores are remarkably larger than those in degree-preserving randomized networks, while their broad degree distributions commonly enable the viable cores to shrink gradually as reaction nodes are deleted. We demonstrate by investigating the viable cores and the branching ratios of inviable nodes in the pruning process for artificial correlated networks that the positive degree–degree correlations of the empirical networks may underlie the enlarged viable cores compared to the randomized networks. By investigating the relation between degree and cross-species frequency of metabolic compounds and reactions, we elucidate the evolutionary origin of the correlations. Our study unveils the principle of metabolic resource allocation and its evolutionary mechanism, potentially useful for pharmaceutical applications.

Suggested Citation

  • Lee, Mi Jin & Yi, Sudo & Lee, Deok-Sun, 2024. "Correlation-enhanced viable core in metabolic networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s096007792400328x
    DOI: 10.1016/j.chaos.2024.114776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792400328X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s096007792400328x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.