IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923011621.html
   My bibliography  Save this article

Quasi-invariant and attracting sets of competitive neural networks with time-varying and infinite distributed delays

Author

Listed:
  • Yang, Jin
  • Jian, Jigui

Abstract

This paper focuses on the quasi-invariant set (QIS), global attracting set (GAS) and global exponential attracting set (GEAS) of competitive neural networks (CNNs) with time-varying and infinite distributed delays. For these purposes, based on the characteristics of nonnegative matrix and M-matrix, a new bidirectional delay integral inequality and a novel integro-differential inequality are first established. From the founded integral inequality, the existence conditions of the QIS and the GAS of the discussed system are obtained. Besides, the existence conditions of the GEAS are also given by the proposed integro-differential inequality, which gets rid of the construction of complex Lyapunov functions and functionals. The frameworks of the QIS, GAS and GEAS are also given. A numerical example is analyzed to confirm the validity of the obtained results in the end.

Suggested Citation

  • Yang, Jin & Jian, Jigui, 2023. "Quasi-invariant and attracting sets of competitive neural networks with time-varying and infinite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011621
    DOI: 10.1016/j.chaos.2023.114260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923011621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Zhicheng & Yang, Yongqing & Chang, Qi & Xu, Xianyun, 2020. "The optimal state estimation for competitive neural network with time-varying delay using Local Search Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Peng, Qiu & Jian, Jigui, 2021. "Estimating the ultimate bounds and synchronization of fractional-order plasma chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adhira, B. & Nagamani, G., 2023. "Exponentially finite-time dissipative discrete state estimator for delayed competitive neural networks via semi-discretization approach," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Hou, Yi-You & Lin, Ming-Hung & Saberi-Nik, Hassan & Arya, Yogendra, 2024. "Boundary analysis and energy feedback control of fractional-order extended Malkus–Robbins dynamo system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of incommensurate fractional-order competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    5. Wang, Shasha & Jian, Jigui, 2023. "Predefined-time synchronization of fractional-order memristive competitive neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Liu, Ping & Zhang, Yulan & Mohammed, Khidhair Jasim & Lopes, António M. & Saberi-Nik, Hassan, 2023. "The global dynamics of a new fractional-order chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.