IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923009256.html
   My bibliography  Save this article

Visibility phenomena in hypercubes

Author

Listed:
  • Athreya, Jayadev S.
  • Cobeli, Cristian
  • Zaharescu, Alexandru

Abstract

We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic themes. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W=([0,N]∩Z)d are almost equilateral having all sides almost equal to dN/6, and the sine of the typical angle between rays from the visual spectra from the origin of W is, in the limit, equal to 7/4, as d and N/d tend to infinity. We also show that there exists an interesting number theoretic constant Λd,K, which is the limit probability of the chance that a K-polytope with vertices in the lattice W has all vertices visible from each other.

Suggested Citation

  • Athreya, Jayadev S. & Cobeli, Cristian & Zaharescu, Alexandru, 2023. "Visibility phenomena in hypercubes," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009256
    DOI: 10.1016/j.chaos.2023.114024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongjun Li & Xing Qiu, 2016. "Moments of Distance from a Vertex to a Uniformly Distributed Random Point within Arbitrary Triangles," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009256. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.