IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007555.html
   My bibliography  Save this article

Anticipating food price crises by reservoir computing

Author

Listed:
  • Domingo, L.
  • Grande, M.
  • Borondo, F.
  • Borondo, J.

Abstract

Anticipating price crises in the market of agri-commodities is critical to guarantee both the sustainability of the food system and to ensure food security. However, this is not an easy task, since the problem implies analyzing small and very volatile time series, which are highly influenced by external factors. In this paper, we show that suitable reservoir computing algorithms can be developed that outperform traditional approaches, by reducing the Mean Absolute Error and, more importantly, increasing the Market Direction Accuracy. For this purpose, the applicability of five variants of such method to forecast this market is explored, and their performance evaluated by comparing the results with those obtained with the standard LSTM and SARIMA benchmarks. We conclude that decomposing the time series and modeling each component with a separate RC is essential to successfully anticipate price trends, and that this method works even in the complex changing temporal scenario of the Covid-19 pandemic, when part of the data were collected.

Suggested Citation

  • Domingo, L. & Grande, M. & Borondo, F. & Borondo, J., 2023. "Anticipating food price crises by reservoir computing," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007555
    DOI: 10.1016/j.chaos.2023.113854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laia Domingo & Mar Grande & Florentino Borondo & Javier Borondo, 2024. "Quantifying the Uncertainty of Reservoir Computing: Confidence Intervals for Time-Series Forecasting," Mathematics, MDPI, vol. 12(19), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.