IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006975.html
   My bibliography  Save this article

The Hutchinson–Barnsley theory for iterated function system with bounded cyclic contractions

Author

Listed:
  • Medhi, R.
  • Viswanathan, P.

Abstract

The existence of an invariant set, which forms the introductory part of the classical Hutchinson–Barnsley theory of an Iterated Function System (IFS), has been recently established for an IFS consisting of continuous cyclic contractions (Pasupathi et al., 2020). The current work seeks to supplement the cited reference in two ways. One intriguing aspect that sets the fixed point theorems of cyclic maps apart from the classical Banach contraction principle is the lack of a continuity requirement. As a result, in contrast to the research study in the cited reference, it appears more natural to consider the cyclic IFS without making the additional continuity assumption on the cyclic contractions involved in the IFS. With this in mind, the first goal of the present note is to consider a type of cyclic IFS wherein the constituent maps need not be continuous. Second, we obtain the coding map and invariant measure corresponding to the cyclic IFS.

Suggested Citation

  • Medhi, R. & Viswanathan, P., 2023. "The Hutchinson–Barnsley theory for iterated function system with bounded cyclic contractions," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006975
    DOI: 10.1016/j.chaos.2023.113796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Józef Myjak & Tomasz Szarek, 2003. "Attractors of iterated function systems and Markov operators," Abstract and Applied Analysis, Hindawi, vol. 2003, pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006975. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.