IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004381.html
   My bibliography  Save this article

A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation

Author

Listed:
  • Jia, Hongyan
  • Liu, Jingwen
  • Li, Wei
  • Du, Meng

Abstract

A family of new generalized multi-scroll Hamiltonian conservative chaotic systems(HCCSs) are firstly found by investigating Hamiltonian energy of a Hamiltonian conservative chaotic system. And the novelty of the family of new generalized multi-scroll HCCSs is that they are on some invariant hypersurfaces depending on Hamiltonian energy. Subsequently, some numerical analysis are given to show multi-scroll chaotic dynamics and complex characteristics of the family of new generalized multi-scroll HCCSs. Finally, FPGA circuits are employed to implement the family of new generalized multi-scroll HCCSs, which not only physically show the existence of multi-scroll dynamics, but also provide a family of new pseudo-random signal generators for engineering applications.

Suggested Citation

  • Jia, Hongyan & Liu, Jingwen & Li, Wei & Du, Meng, 2023. "A family of new generalized multi-scroll Hamiltonian conservative chaotic flows on invariant hypersurfaces and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004381
    DOI: 10.1016/j.chaos.2023.113537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cang, Shijian & Wu, Aiguo & Wang, Zenghui & Chen, Zengqiang, 2017. "On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 45-51.
    2. Singh, Jay Prakash & Roy, Binoy Krishna, 2018. "Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 81-91.
    3. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    5. Cang, Shijian & Li, Yue & Kang, Zhijun & Wang, Zenghui, 2020. "Generating multicluster conservative chaotic flows from a generalized Sprott-A system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil, Nariman A. & Said, Lobna A. & Radwan, Ahmed G. & Soliman, Ahmed M., 2020. "Emulation circuits of fractional-order memelements with multiple pinched points and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Yu, Hui & Du, Shengzhi & Dong, Enzeng & Tong, Jigang, 2022. "Transient behaviors and equilibria-analysis-based boundary crisis analysis in a smooth 4D dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Leng, Xiangxin & Gu, Shuangquan & Peng, Qiqi & Du, Baoxiang, 2021. "Study on a four-dimensional fractional-order system with dissipative and conservative properties," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Jia, Hongyan & Shi, Wenxin & Wang, Lei & Qi, Guoyuan, 2020. "Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Li, Chunbiao & Sprott, Julien Clinton & Zhang, Xin & Chai, Lin & Liu, Zuohua, 2022. "Constructing conditional symmetry in symmetric chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Cang, Shijian & Wang, Luo & Zhang, Yapeng & Wang, Zenghui & Chen, Zengqiang, 2022. "Bifurcation and chaos in a smooth 3D dynamical system extended from Nosé-Hoover oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Ahmad, Shabir & Ullah, Aman & Akgül, Ali, 2021. "Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Mohamed, Sara M. & Sayed, Wafaa S. & Said, Lobna A. & Radwan, Ahmed G., 2022. "FPGA realization of fractals based on a new generalized complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Zhou, Ping & Hu, Xikui & Zhu, Zhigang & Ma, Jun, 2021. "What is the most suitable Lyapunov function?," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    11. Li, Yue & Yuan, Mingfeng & Chen, Zengqiang, 2022. "Multi-parameter analysis of transition from conservative to dissipative behaviors for a reversible dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    12. Zhang, Zefeng & Huang, Lilian & Liu, Jin & Guo, Qiang & Du, Xiuli, 2022. "A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    13. Liu, Tianming & Yan, Huizhen & Banerjee, Santo & Mou, Jun, 2021. "A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Cang, Shijian & Li, Yue & Kang, Zhijun & Wang, Zenghui, 2020. "Generating multicluster conservative chaotic flows from a generalized Sprott-A system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    15. Wu, Fuqiang & Zhou, Ping & Alsaedi, Ahmed & Hayat, Tasawar & Ma, Jun, 2018. "Synchronization dependence on initial setting of chaotic systems without equilibria," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 124-132.
    16. Yao, Wenpo & Yao, Wenli & Wang, Jun, 2021. "A novel parameter for nonequilibrium analysis in reconstructed state spaces," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    17. Kuate, Paul Didier Kamdem & Tchendjeu, Achille Ecladore Tchahou & Fotsin, Hilaire, 2020. "A modified Rössler prototype-4 system based on Chua’s diode nonlinearity : Dynamics, multistability, multiscroll generation and FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    19. Ma, Zhiyao & Sun, Ke & Tong, Shaocheng, 2024. "Adaptive asymptotic tracking control of uncertain fractional-order nonlinear systems with unknown control coefficients and actuator faults," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Li, Yue & Yuan, Mingfeng & Chen, Zengqiang, 2023. "Constructing 3D conservative chaotic system with dissipative term based on Shilnikov theorem," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.