IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001236.html
   My bibliography  Save this article

Transition of spatiotemporal patterns in neuron–astrocyte networks

Author

Listed:
  • Ouyang, Zhicheng
  • Yu, Yangyang
  • Liu, Zhilong
  • Feng, PeiHua

Abstract

Recent experiment suggested that astrocytes have a non-negligible effect on regulating neuronal networks and demonstrated how astrocytes influence neuronal firing behavior. In this work, a model for a 2-D neuron–astrocyte network is developed to explore the role of astrocytes in pattern transition of neural network. Dynamical analysis of neuron–astrocyte pair reveals that astrocytic feedback current causes left-shift of spiking interval of the neuron. Furthermore, the spatiotemporal patterns transition of the network are researched under different astrocyte feedback intensities and synaptic conductances. The result shows that the introduction of astrocyte network could not only enrich the diversity of spatiotemporal pattern by inducing pattern behaviors including migration, competition, and combination, but also enhance the firing among neurons under weak synappse connections. The strengthening of astrocyte feedback intensity could raise the firing frequency of neurons, cause changes in the spatial pattern, and delay the transition concerning synaptic conductance. A method to instructively identify critical changes of spatiotemporal patterns in time is proposed. The result shows that astrocyte feedback regulates the neuronal network’s firing and fundamentally influences the pattern transition and evolution.

Suggested Citation

  • Ouyang, Zhicheng & Yu, Yangyang & Liu, Zhilong & Feng, PeiHua, 2023. "Transition of spatiotemporal patterns in neuron–astrocyte networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001236
    DOI: 10.1016/j.chaos.2023.113222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mengmeng Du & Jiajia Li & Liang Chen & Yuguo Yu & Ying Wu, 2018. "Astrocytic Kir4.1 channels and gap junctions account for spontaneous epileptic seizure," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-19, March.
    2. Feng, Peihua & Fan, Qiang & Yuan, Zhixuan & Wu, Ying, 2021. "Transition from regular to labyrinth pattern in a neuronal network with fast inhibitory synapses," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erkan, Erdem, 2023. "Signal encoding performance of astrocyte-dressed Morris Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junli Zhao & Jinyi Sun & Yang Zheng & Yanrong Zheng & Yuying Shao & Yulan Li & Fan Fei & Cenglin Xu & Xiuxiu Liu & Shuang Wang & Yeping Ruan & Jinggen Liu & Shumin Duan & Zhong Chen & Yi Wang, 2022. "Activated astrocytes attenuate neocortical seizures in rodent models through driving Na+-K+-ATPase," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Yuan, Zhixuan & Liu, Jianing & Du, Mengmeng & Wu, Ying, 2024. "Dynamic mechanisms of delay formation and propagation in neuronal astrocytic network with electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    3. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Shen, Zhuan & Zhang, Honghui & Du, Lin & Deng, Zichen & Kurths, Jürgen, 2023. "Initiation and termination of epilepsy induced by Lévy noise: A view from the cortical neural mass model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Zhao, Jinyi & Yu, Ying & Wang, Qingyun, 2022. "Dynamical regulation of epileptiform discharges caused by abnormal astrocyte function with optogenetic stimulation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    6. Li, Jiajia & Zhang, Xuan & Du, Mengmeng & Wu, Ying, 2022. "Switching behavior of the gamma power in the neuronal network modulated by the astrocytes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.