IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922009535.html
   My bibliography  Save this article

Non-Hermitian control of optical turbulence in systems with fractional dispersion

Author

Listed:
  • Ivars, Salim B.
  • Botey, Muriel
  • Herrero, Ramon
  • Staliunas, Kestutis

Abstract

We show an efficient mechanism to control optical turbulence in systems with different dispersion laws, including parabolic, sub-diffractive, hyper-diffractive or general fractional dispersion. The method is based on the modification of the energy cascade through spatial scales leading to turbulence: a non-Hermitian spatio-temporal periodic potential allows unidirectional coupling between modes in the excitation process. We prove a significant increase and reduction of the energy flow in turbulent states, by either condensing the excitation towards small wave-numbers or affecting the energy transfer towards large wave-number. The study is based on the complex Fractional Ginzburg–Landau equation, a universal model for pattern formation and turbulence in a wide range of systems. The enhancement or reduction of turbulence is indeed dependent on the imposed direction of the energy flow, controlled by the phase shift between the real and imaginary parts of the temporal oscillation of the non-Hermitian potential.

Suggested Citation

  • Ivars, Salim B. & Botey, Muriel & Herrero, Ramon & Staliunas, Kestutis, 2022. "Non-Hermitian control of optical turbulence in systems with fractional dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009535
    DOI: 10.1016/j.chaos.2022.112774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.