IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008827.html
   My bibliography  Save this article

Dissipative solitons stabilized by nonlinear gradients in one spatial dimension: From deterministic to stochastic aspects, and a perspective

Author

Listed:
  • Descalzi, Orazio
  • Cartes, Carlos

Abstract

The purpose of this article is twofold. Firstly, to investigate the formation of localized spatiotemporal chaos in the complex cubic Ginzburg–Landau equation including nonlinear gradient terms. We found a transition to spatiotemporal disorder via quasiperiodicity accompanied by the fact that incommensurate satellite peaks arise around the fundamental frequency and its harmonics. Secondly, we review the influence of multiplicative noise on stationary pulses stabilized by nonlinear gradients. Numerical simulations show surprising results that are explained analytically. We found that multiplicative noise can induce a velocity change of propagating dissipative solitons. This completes previous communications on the two issues addressed in O. Descalzi et al., (2019, 2021, 2022).

Suggested Citation

  • Descalzi, Orazio & Cartes, Carlos, 2022. "Dissipative solitons stabilized by nonlinear gradients in one spatial dimension: From deterministic to stochastic aspects, and a perspective," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008827
    DOI: 10.1016/j.chaos.2022.112703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.