IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v163y2022ics0960077922007160.html
   My bibliography  Save this article

Strong fixed points of Φ-couplings and generation of fractals

Author

Listed:
  • Choudhury, Binayak S.
  • Chakraborty, Priyam

Abstract

In this paper we establish a strong coupled fixed point theorem for a generalized coupling between two subsets of a metric space. These are cyclic generalizations of coupled mappings. Starting from two arbitrary points collected from the two subsets between which the coupling is defined, we construct two iterations each of which converges to the coupled fixed point. Further it is shown that such a point is unique. The main result is supported with an example which shows that our result is an actual generalization of an existing result. We also discuss an application in which we construct an iterated function system leading to the generation of a strong coupled fractal which we define here. Further we illustrate the generation of such a fractal set through an example.

Suggested Citation

  • Choudhury, Binayak S. & Chakraborty, Priyam, 2022. "Strong fixed points of Φ-couplings and generation of fractals," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007160
    DOI: 10.1016/j.chaos.2022.112514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Choudhury, Binayak S. & Metiya, Nikhilesh & Kundu, Sunirmal, 2020. "Existence, data-dependence and stability of coupled fixed point sets of some multivalued operators," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Petruşel, Adrian & Petruşel, Gabriela, 2019. "Coupled fractal dynamics via Meir–Keeler operators," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 206-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Izadi, Mohammad & Yüzbaşı, Şuayip & Adel, Waleed, 2022. "Accurate and efficient matrix techniques for solving the fractional Lotka–Volterra population model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:163:y:2022:i:c:s0960077922007160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.