IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922007147.html
   My bibliography  Save this article

MFF-SAug: Multi feature fusion with spectrogram augmentation of speech emotion recognition using convolution neural network

Author

Listed:
  • Jothimani, S.
  • Premalatha, K.

Abstract

The Speech Emotion Recognition (SER) is a complex task because of the feature selections that reflect the emotion from the human speech. The SER plays a vital role and is very challenging in Human-Computer Interaction (HCI). Traditional methods provide inconsistent feature extraction for emotion recognition. The primary motive of this paper is to improve the accuracy of the classification of eight emotions from the human voice. The proposed MFF-SAug research, Enhance the emotion prediction from the speech by Noise Removal, White Noise Injection, and Pitch Tuning. On pre-processed speech signals, the feature extraction techniques Mel Frequency Cepstral Coefficients (MFCC), Zero Crossing Rate (ZCR), and Root Mean Square (RMS) are applied and combined to achieve substantial performance used for emotion recognition. The augmentation applies to the raw speech for a contrastive loss that maximizes agreement between differently augmented samples in the latent space and reconstructs the loss of input representation for better accuracy prediction. A state-of-the-art Convolution Neural Network (CNN) is proposed for enhanced speech representation learning and voice emotion classification. Further, this MFF-SAug method is compared with the CNN + LSTM model. The experimental analysis was carried out using the RAVDESS, CREMA, SAVEE, and TESS datasets. Thus, the classifier achieved a robust representation for speech emotion recognition with an accuracy of 92.6 %, 89.9, 84.9 %, and 99.6 % for RAVDESS, CREMA, SAVEE, and TESS datasets, respectively.

Suggested Citation

  • Jothimani, S. & Premalatha, K., 2022. "MFF-SAug: Multi feature fusion with spectrogram augmentation of speech emotion recognition using convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007147
    DOI: 10.1016/j.chaos.2022.112512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.