IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v162y2022ics0960077922007068.html
   My bibliography  Save this article

Scaling properties of a class of interfacial singular equations

Author

Listed:
  • Guedda, Mohamed
  • Hriczo, Krisztian
  • Taourirte, Laila
  • Chaiboub, Jihade
  • Bognar, Gabriella

Abstract

This paper can be considered as an introductory review of scale invariance theories illustrated by the study of the equation ∂th=−∂x∂xh1−2ν+∂xxxh, where ν>1/2. The d−dimensionals version of this equation is proposed for ν≥1 to discuss the coarsening of growing interfaces that induce a mound-type structure without slope selection (Golubović, 1997). Firstly, the above equation is investigated in detail by using a dynamic scaling approach, thus allowing for obtaining a wide range of dynamic scaling functions (or pseudosimilarity solutions) which lend themselves to similarity properties. In addition, it is shown that these similarity solutions are spatial periodic solutions for any ν>1/2, confirming that the interfacial equation undergoes a perpetual coarsening process. The exponents β and α describing, respectively, the growth laws of the interfacial width and the mound lateral size are found to be exactly β=(1+ν)/4ν and α=1/4, for any ν>12. Our analytical contribution examines the scaling analysis in detail and exhibits the geometrical properties of the profile or scaling functions. Our finding coincides with the result previously presented by Golubović for 0<ν≤3/2.

Suggested Citation

  • Guedda, Mohamed & Hriczo, Krisztian & Taourirte, Laila & Chaiboub, Jihade & Bognar, Gabriella, 2022. "Scaling properties of a class of interfacial singular equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007068
    DOI: 10.1016/j.chaos.2022.112501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922007068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:162:y:2022:i:c:s0960077922007068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.