IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002193.html
   My bibliography  Save this article

Expanding measure has nonuniform specification property on random dynamical system

Author

Listed:
  • Bilbao, Rafael A.

Abstract

In the present paper, we study the distribution of the return points in the fibers for a random nonuniformly expanding dynamical system, preserving an ergodic probability. We also show the abundance of nonlacunarity of hyperbolic times that are obtained along the orbits through the fibers. We conclude that any ergodic measure with positive Lyapunov exponents satisfies the nonuniform specification property among fibers. As consequences, we prove that any expanding measure is the limit of probability measures whose measures of disintegration on the fibers are supported on a finite number of return points and we prove that the average of the measures on the fibers corresponding to a disintegration, along the orbit (θn(w))n≥0 in the base dynamics is the limit of Dirac measures supported on return orbits on the fibers.

Suggested Citation

  • Bilbao, Rafael A., 2022. "Expanding measure has nonuniform specification property on random dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002193
    DOI: 10.1016/j.chaos.2022.112009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.