IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000303.html
   My bibliography  Save this article

Characteristics of edge-based interdependent networks

Author

Listed:
  • Zhao, Yanyan
  • Zhou, Jie
  • Zou, Yong
  • Guan, Shuguang
  • Gao, Yanli

Abstract

Edge-based interdependent networks (EIN) where edges in one network layer are interdependent with edges in other layers, as contrast to the classical interdependent networks (NIN) where nodes in one layer are interdependent with nodes in other layers, have been an emerging topic in the field of interdependent networks. In this paper, by proposing an EIN on a quenched network perspective, we find that EIN is generally more robust than NIN and further reveal that this property roots in the fact that in a network the excessive degree of an edge is on an average larger than the degree of a node. A theory is developed based on a quenched network framework to verify this property, where the notion of compound excessive degree (CED) of an edge is introduced. The introduction of CED allows to define several novel properties of EIN, including the interlayer correlation and malicious attack relevant to CED. Systematic investigations on these properties are provided to extend the understanding of interdependent networks from the perspective of edge-interdependency.

Suggested Citation

  • Zhao, Yanyan & Zhou, Jie & Zou, Yong & Guan, Shuguang & Gao, Yanli, 2022. "Characteristics of edge-based interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000303
    DOI: 10.1016/j.chaos.2022.111819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    2. Ji, Xingpei & Wang, Bo & Liu, Dichen & Chen, Guo & Tang, Fei & Wei, Daqian & Tu, Lian, 2016. "Improving interdependent networks robustness by adding connectivity links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 9-19.
    3. Wang, Shuai & Liu, Jing, 2016. "Robustness of single and interdependent scale-free interaction networks with various parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 139-151.
    4. Cui, Pengshuai & Zhu, Peidong & Shao, Chengcheng & Xun, Peng, 2017. "Cascading failures in interdependent networks due to insufficient received support capability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 777-788.
    5. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    6. Gao, YanLi & Chen, ShiMing & Zhou, Jie & Stanley, H.E. & Gao, Jianxi, 2021. "Percolation of edge-coupled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Lili & Yin, Jun & Tan, Fei & Liao, Haibin, 2023. "Robustness analysis of edge-coupled interdependent networks under different attack strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    3. Xu, Xiaohan & Huang, Ailing & Shalaby, Amer & Feng, Qian & Chen, Mingyang & Qi, Geqi, 2024. "Exploring cascading failure processes of interdependent multi-modal public transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Bachmann, Ivana & Valdés, Valeria & Bustos-Jiménez, Javier & Bustos, Benjamin, 2022. "Effect of adding physical links on the robustness of the Internet modeled as a physical–logical interdependent network using simple strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    3. Fang Zhou & Xiang He & Yongbo Yuan & Mingyuan Zhang, 2020. "Influence of Interlink Topology on Multilayer Network Robustness," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    4. Zhou, Lili & Yin, Jun & Tan, Fei & Liao, Haibin, 2023. "Robustness analysis of edge-coupled interdependent networks under different attack strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    5. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    6. Tian, Meng & Dong, Zhengcheng & Cui, Mingjian & Wang, Jianhui & Wang, Xianpei & Zhao, Le, 2019. "Energy-supported cascading failure model on interdependent networks considering control nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 195-204.
    7. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    8. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2021. "Impact of wind power uncertainty on cascading failure in cyber–physical power systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Ji, Xingpei & Wang, Bo & Liu, Dichen & Dong, Zhaoyang & Chen, Guo & Zhu, Zhenshan & Zhu, Xuedong & Wang, Xunting, 2016. "Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 235-245.
    10. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.
    11. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    12. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    13. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    14. Dang, Yuanchen & Yang, Lixin & He, Peiyan & Guo, Gaihui, 2023. "Effects of collapse probability on cascading failure dynamics for duplex weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    15. Kazawa, Yui & Tsugawa, Sho, 2020. "Effectiveness of link-addition strategies for improving the robustness of both multiplex and interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    17. Kai Gong & Jia-Jian Wu & Ying Liu & Qing Li & Run-Ran Liu & Ming Tang, 2019. "The Effective Healing Strategy against Localized Attacks on Interdependent Spatially Embedded Networks," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    18. Yue Dong & Jiepeng Wang & Tingqiang Chen, 2019. "Price Linkage Rumors in the Stock Market and Investor Risk Contagion on Bilayer-Coupled Networks," Complexity, Hindawi, vol. 2019, pages 1-21, April.
    19. Zhou, Hong-Li & Zhang, Xiao-Dong, 2018. "Dynamic robustness of knowledge collaboration network of open source product development community," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 601-612.
    20. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.