IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics096007792200011x.html
   My bibliography  Save this article

Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition

Author

Listed:
  • Andres, Jan
  • Ludvík, Pavel

Abstract

The impulsive differential equations are examined via the associated Poincaré translation operators in terms of topological entropy. The crucial role is played by the entropy analysis of the compositions of Poincaré’s operators with the impulsive maps. For the scalar (one-dimensional) problems, the lower entropy estimations can be effectively obtained by means of horseshoes. For the vector (higher-dimensional) problems, the situation becomes more delicate and requires rather sophisticated techniques. Five main theorems are presented about a positive topological entropy (i.e. topological chaos) for given impulsive problems. For vector linear homogeneous differential equations with constant coefficients and isometric impulses, the zero entropy is deduced under commutativity restrictions imposed on the components of a mentioned composition. Several illustrative examples and numerical simulations are supplied.

Suggested Citation

  • Andres, Jan & Ludvík, Pavel, 2022. "Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s096007792200011x
    DOI: 10.1016/j.chaos.2022.111800
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200011X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s096007792200011x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.