IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077921011346.html
   My bibliography  Save this article

Dynamical mechanism behind ghosts unveiled in a map complexification

Author

Listed:
  • Canela, Jordi
  • Alsedà, Lluís
  • Fagella, Núria
  • Sardanyés, Josep

Abstract

Complex systems such as ecosystems, electronic circuits, lasers, or chemical reactions can be modelled by dynamical systems which typically experience bifurcations. It is known that transients become extremely long close to bifurcations, also following well-defined scaling laws as the bifurcation parameter gets closer the bifurcation value. For saddle-node bifurcations, the dynamical mechanism responsible for these delays, tangible at the real numbers phase space (so-called ghosts), occurs at the complex phase space. To study this phenomenon we have complexified an ecological map with a saddle-node bifurcation. We have investigated the complex (as opposed to real) dynamics after this bifurcation, identifying the fundamental mechanism causing such long delays, given by the presence of two repellers in the complex space. Such repellers appear to be extremely close to the real line, thus forming a narrow channel close to the two new fixed points and responsible for the slow passage of the orbits. We analytically provide the relation between the well-known inverse square-root scaling law of transient times and the multipliers of these repellers. We finally prove that the same phenomenon occurs for more general i.e. non-necessarily polynomial, models.

Suggested Citation

  • Canela, Jordi & Alsedà, Lluís & Fagella, Núria & Sardanyés, Josep, 2022. "Dynamical mechanism behind ghosts unveiled in a map complexification," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011346
    DOI: 10.1016/j.chaos.2021.111780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111780?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calsina, Àngel & Cuadrado, Sílvia & Vidiella, Blai & Sardanyés, Josep, 2023. "About ghost transients in spatial continuous media," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077921011346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.