IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010833.html
   My bibliography  Save this article

Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher–Kolmogorov equation

Author

Listed:
  • Hosseininia, M.
  • Heydari, M.H.
  • Avazzadeh, Z.

Abstract

This paper presents a numerical technique for solving the variable-order fractional extended Fisher–Kolmogorov equation. The method suggested to solve this problem is based on the orthonormal shifted discrete Legendre polynomials and the collocation method. First, we expand the unknown solution of the problem using the these polynomialss. Also, we approximate the second- and fourth-order classical derivatives, as well as the variable-order fractional derivatives by these basis functions. Then, we substitute these approximations in the equation. Next, we utilize the classical and fractional derivative matrices together with the collocation method to convert the main equation into a system containing nonlinear algebraic equations. We show the correctness of the proposed scheme by providing several numerical examples.

Suggested Citation

  • Hosseininia, M. & Heydari, M.H. & Avazzadeh, Z., 2022. "Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher–Kolmogorov equation," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010833
    DOI: 10.1016/j.chaos.2021.111729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ming, 2020. "Multi-fractional generalized Cauchy process and its application to teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qayyum, Mubashir & Tahir, Aneeza & Saeed, Syed Tauseef & Akgül, Ali, 2023. "Series-form solutions of generalized fractional-fisher models with uncertainties using hybrid approach in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heydari, M.H. & Razzaghi, M., 2021. "A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Li, Ming & Wang, Anqi, 2020. "Fractal teletraffic delay bounds in computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Heydari, M.H. & Razzaghi, M. & Rouzegar, J., 2022. "Chebyshev cardinal polynomials for delay distributed-order fractional fourth-order sub-diffusion equation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    5. Li, Ming, 2021. "Generalized fractional Gaussian noise and its application to traffic modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.