IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics096007792100998x.html
   My bibliography  Save this article

Thermal stability of solitons in protein α-helices

Author

Listed:
  • Georgiev, Danko D.
  • Glazebrook, James F.

Abstract

Protein α-helices provide an ordered biological environment that is conducive to soliton-assisted energy transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however, could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have computationally solved the system of stochastic differential equations that govern the quantum dynamics of protein solitons at physiological temperature, T=310 K, for either a single isolated α-helix spine of hydrogen bonded peptide groups or the full protein α-helix comprised of three parallel α-helix spines. The simulated stochastic dynamics revealed that although the thermal noise is detrimental for the single isolated α-helix spine, the cooperative action of three amide I exciton quanta in the full protein α-helix ensures soliton lifetime of over 30 ps, during which the amide I energy could be transported along the entire extent of an 18-nm-long α-helix. Thus, macromolecular protein complexes, which are built up of protein α-helices could harness soliton-assisted energy transport at physiological temperature. Because the hydrolysis of a single adenosine triphosphate molecule is able to initiate three amide I exciton quanta, it is feasible that multiquantal protein solitons subserve a variety of specialized physiological functions in living systems.

Suggested Citation

  • Georgiev, Danko D. & Glazebrook, James F., 2022. "Thermal stability of solitons in protein α-helices," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792100998x
    DOI: 10.1016/j.chaos.2021.111644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgiev, Danko D. & Glazebrook, James F., 2019. "Quantum tunneling of Davydov solitons through massive barriers," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 275-293.
    2. Georgiev, Danko D. & Glazebrook, James F., 2019. "On the quantum dynamics of Davydov solitons in protein α-helices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 257-269.
    3. Jingxi Luo & Bernard M. A. G. Piette, 2017. "A generalised Davydov-Scott model for polarons in linear peptide chains," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassine Benia & Marianna Ruggieri & Andrea Scapellato, 2019. "Exact Solutions for a Modified Schrödinger Equation," Mathematics, MDPI, vol. 7(10), pages 1-9, September.
    2. Georgiev, Danko D. & Glazebrook, James F., 2019. "Quantum tunneling of Davydov solitons through massive barriers," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 275-293.
    3. Georgiev, Danko D. & Glazebrook, James F., 2019. "On the quantum dynamics of Davydov solitons in protein α-helices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 257-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s096007792100998x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.