IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v154y2022ics0960077921009644.html
   My bibliography  Save this article

Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur

Author

Listed:
  • Lahmiri, Salim
  • Bekiros, Stelios

Abstract

In this study, we present an improved computer-aided-diagnosis (CAD) system to distinguish between normal heart sound and one affected with murmur. The proposed system is based on nonlinear characteristics of the original heart sound high frequency oscillations. Specifically, the original signal is decomposed by discrete wavelet transform (DWT) and analyzed by complexity measures in a straightforward manner to describe its overall characteristics, rather than to describe characteristics of the sounds related to the turbulent flow during the different phases of a heartbeat. The complexity measures include Hurst exponent, Lempel-Ziv information, and Shannon entropy. They are computed from the high frequency oscillations which are obtained by wavelet transform. These nonlinear characteristics are employed to train nonlinear support vector machines (SVM) classifier. The latter was tuned by Bayesian optimization. Tested on a new large dataset, the proposed CAD system outperforms existing models that were validated on the same database. The proposed approach is fast, effective, and promising in clinical milieu.

Suggested Citation

  • Lahmiri, Salim & Bekiros, Stelios, 2022. "Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009644
    DOI: 10.1016/j.chaos.2021.111610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahmiri, Salim, 2017. "Parkinson’s disease detection based on dysphonia measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 98-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim & Tadj, Chakib & Gargour, Christian & Bekiros, Stelios, 2023. "Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009644. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.