IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921007967.html
   My bibliography  Save this article

Fuzzy simulation of European option pricing using sub-fractional Brownian motion

Author

Listed:
  • Bian, Liu
  • Li, Zhi

Abstract

On the basis of the sub-fractional Black-Scholes model, considering that the financial market is uncertain with randomness and fuzziness, we used stochastic analysis, fractal theory and fuzzy set theory to construct European option pricing model based on the long-term memory property of the financial market in an uncertain environment. Afterwards the influence of Hurst index H, a measure of long-term memory in financial market, on European option pricing is analyzed. Finally, the rationality and feasibility of the pricing model are demonstrated by numerical experiment. The obtained results show that the European options pricing model with long-term memory property is more suitable for financial markets under uncertain environment.

Suggested Citation

  • Bian, Liu & Li, Zhi, 2021. "Fuzzy simulation of European option pricing using sub-fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921007967
    DOI: 10.1016/j.chaos.2021.111442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2010. "Study of memory effects in international market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1653-1664.
    2. Jagers, Peter & Klebaner, Fima C., 2000. "Population-size-dependent and age-dependent branching processes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 235-254, June.
    3. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    4. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    5. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyue Wei & Cuilian You & Yujie Zhang, 2023. "European Option Pricing Under Fuzzy CEV Model," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 415-432, February.
    2. Ma, Pengcheng & Najafi, Alireza & Gomez-Aguilar, J.F., 2024. "Sub mixed fractional Brownian motion and its application to finance," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    3. Xianfei Hui & Baiqing Sun & Hui Jiang & Yan Zhou, 2022. "Modeling dynamic volatility under uncertain environment with fuzziness and randomness," Papers 2204.12657, arXiv.org, revised Oct 2022.
    4. Hersugondo Hersugondo & Endang Tri Widyarti & Di Asih I Maruddani & Trimono Trimono, 2022. "ASEAN-5 Stock Price Index Valuation after COVID-19 Outbreak through GBM-MCS and VaR-SDPP Methods," IJFS, MDPI, vol. 10(4), pages 1-19, November.
    5. Wang, Song, 2024. "Pricing European call options with interval-valued volatility and interest rate," Applied Mathematics and Computation, Elsevier, vol. 474(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    2. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    6. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    7. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    8. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    9. Lo Nigro, Giovanna & Morreale, Azzurra & Enea, Gianluca, 2014. "Open innovation: A real option to restore value to the biopharmaceutical R&D," International Journal of Production Economics, Elsevier, vol. 149(C), pages 183-193.
    10. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    11. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    12. Ardian, Aldin & Kumral, Mustafa, 2020. "Incorporating stochastic correlations into mining project evaluation using the Jacobi process," Resources Policy, Elsevier, vol. 65(C).
    13. repec:dau:papers:123456789/5374 is not listed on IDEAS
    14. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    15. Hui, Eddie Chi-man, 2006. "An enhanced implied tree model for option pricing: A study on Hong Kong property stock options," International Review of Economics & Finance, Elsevier, vol. 15(3), pages 324-345.
    16. Lishang Jiang & Qihong Chen & Lijun Wang & Jin Zhang, 2003. "A new well-posed algorithm to recover implied local volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 451-457.
    17. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    18. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    19. Xu, Wei & Šević, Aleksandar & Šević, Željko, 2022. "Implied volatility surface construction for commodity futures options traded in China," Research in International Business and Finance, Elsevier, vol. 61(C).
    20. Siddiqi, Hammad, 2014. "The Financial Market Consequences of Growing Awareness: The Case of Implied Volatiltiy Skew," Risk and Sustainable Management Group Working Papers 162568, University of Queensland, School of Economics.
    21. Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu, 2023. "Unifying Market Microstructure and Dynamic Asset Pricing," Papers 2304.02356, arXiv.org, revised Feb 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921007967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.