IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip1s0960077921009279.html
   My bibliography  Save this article

A novel approach regarding the fixed points of repelling nature

Author

Listed:
  • Cosgun, Tahir
  • Sari, Murat

Abstract

Although there are various numerical techniques to find the stable equilibria of a nonlinear system in scientific computing, no widely-used computational approach has been encountered to discover the unstable equilibria of a system in the literature. This study aims at presenting a new approach to uncover the equilibrium positions of a dynamical system exhibiting a repelling nature. A newly developed algorithm called the reversed fixed point iteration method (RFPIM) is presented to find the unstable equilibrium positions of a nonlinear system. The current method, keeping the real features of a problem, is able to uncover the behavior of a nonlinear system near the unstable equilibria without facing any conventional drawbacks. In this respect, it is mathematically proven and numerically observed that the present approach has various superiorities against the conventional approach. Some illustrative examples regarding the root-finding problem, population dynamics, integral equations, control problems, and chaotic systems have been utilized to test the current method. The results reveal that in finding the unstable equilibria of a differential operator, the use of relatively larger step sizes together with the RFPIM leads to more accurate results as opposed to common expectations. The findings have clearly shown that less consumption of CPU time and storage space could be succeeded by using larger step sizes via the RFPIM.

Suggested Citation

  • Cosgun, Tahir & Sari, Murat, 2021. "A novel approach regarding the fixed points of repelling nature," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921009279
    DOI: 10.1016/j.chaos.2021.111573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921009279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.