IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip1s0960077921008547.html
   My bibliography  Save this article

How non-equilibrium correlations in active matter reveal the topological crossover in glasses

Author

Listed:
  • Gradenigo, Giacomo
  • Paoluzzi, Matteo

Abstract

As shown by early studies on mean-field models of the glass transition, the geometrical features of the energy landscape provide fundamental information on the crossover from high-temperature simple relaxational dynamics to low-temperature activated relaxation. In particular, the critical slowing down of dynamics typical of glass formers has been related to a crossover from a saddle-dominated energy landscape (at high temperatures) to a minima-dominated landscape (at low temperatures). We show that active particles can serve as a useful tool to gain insight into this topological crossover. Once configurations equilibrated down in the glassy phase are provided, we show how features of the landscape are revealed by switching on some activity in particle dynamics. In particular we explain here the mechanism, taking as a reference point the pure p-spin model, by which the presence of self-propulsion is expected to induce critical stationary non-equilibrium correlations in correspondence to the minima-to-saddles crossover.

Suggested Citation

  • Gradenigo, Giacomo & Paoluzzi, Matteo, 2021. "How non-equilibrium correlations in active matter reveal the topological crossover in glasses," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008547
    DOI: 10.1016/j.chaos.2021.111500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.