IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921008043.html
   My bibliography  Save this article

Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems

Author

Listed:
  • Dagdevir, Eda
  • Tokmakci, Mahmut

Abstract

Electroencephalogram (EEG) signals classification, which are important for brain computer interfaces (BCI) systems, is extremely difficult due to the inherent complexity and tendency to artifact properties of the signals. In this paper, a novel methodology based on Truncation Thresholds (TT) method based Empirical Mode Decomposition (EMD) method and statistical Common Spatial Pattern (CSP) feature extraction method is proposed to classified left and right hand imaginary movements from EEG signals. The TT method is used to change the selected local maximum and minimum points with EMD to distinguish more accurately the hidden information about the motor imagery cover the sub-bands in the frequency domain in addition to remove the blinking electrooculography (EOG) artefacts. TT method is performed to raw EEG signals. Then, statistical spatial features are extracted with CSP method from each Intrinsic Modal Component (IMF) which is created by used the EEG signals with the EMD method. Finally, the extracted features are fed to three different classifiers which are SVM, KNN and LDA. The proposed methodology is applied to our dataset and public BCI Competition IV-2b dataset. The results show that the proposed methodology provides accuracy of 97% and 94% with using LDA classifier for our dataset and with using KNN classifier for BCI Competition IV-2b dataset, respectively.

Suggested Citation

  • Dagdevir, Eda & Tokmakci, Mahmut, 2021. "Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008043
    DOI: 10.1016/j.chaos.2021.111450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Vico Fallani, Fabrizio & Chessa, Alessandro & Valencia, Miguel & Chavez, Mario & Astolfi, Laura & Cincotti, Febo & Mattia, Donatella & Babiloni, Fabio, 2012. "Community structure in large-scale cortical networks during motor acts," Chaos, Solitons & Fractals, Elsevier, vol. 45(5), pages 603-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahmiri, Salim, 2016. "Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 235-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921008043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.