IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005749.html
   My bibliography  Save this article

Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population

Author

Listed:
  • Nikan, O.
  • Avazzadeh, Z.
  • Tenreiro Machado, J.A.

Abstract

This paper studies a localized meshless algorithm for calculating the solution of a nonlinear biological population model (NBPM). This model describes the dynamics in the biological population and may provide valuable predictions under different scenarios. The solution of the NBPM is approximated by means of local radial basis function based on the partition of unity (LRBF-PU) technique. First, the partial differential equation (PDE) is converted into a system of ordinary differential equations (ODEs) with the help of radial kernels. Afterwards, the system of ODEs is solved through an ODE solver of high-order. The major advantage of this scheme is that it does not requires any linearization. The LRBF-PU approximation helps handling the issue of the matrix ill conditioning that arises in a global RBF approximation. Three examples highlight the efficiency and accuracy of the numerical method. It is verified that the proposed strategy is more efficient in terms of computational time and accuracy in comparison with others available in the literature.

Suggested Citation

  • Nikan, O. & Avazzadeh, Z. & Tenreiro Machado, J.A., 2021. "Numerical simulation of a degenerate parabolic problem occurring in the spatial diffusion of biological population," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005749
    DOI: 10.1016/j.chaos.2021.111220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikan, O. & Avazzadeh, Z., 2021. "A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikan, O. & Avazzadeh, Z., 2022. "A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 394-413.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005749. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.