IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005725.html
   My bibliography  Save this article

Hausdorff dimension of chaotic attractors in a class of nonsmooth systems

Author

Listed:
  • Li, Denghui
  • Miao, Pengcheng
  • Xie, Jianhua
  • Grebogi, Celso

Abstract

Fractal dimension is an important feature of a chaotic attractor. Generally, the rigorous value of Hausdorff dimension of a chaotic attractor is not easy to compute. In this work, we consider a class of discontinuous piecewise linear maps. Initially, we determine a set of parameter values in which the maps have a chaotic attractor with an Sinai-Ruelle-Bowen measure. Then we give a lower bound and an upper bound of the Hausdorff dimension of the attractor. Our rigorous analysis shows that the two bounds are equal, and thus the exact formula of the Hausdorff dimension of the attractor is obtained. Moreover, the relationship between the Hausdorff dimension and the parameter values is discussed in terms of the derived formula.

Suggested Citation

  • Li, Denghui & Miao, Pengcheng & Xie, Jianhua & Grebogi, Celso, 2021. "Hausdorff dimension of chaotic attractors in a class of nonsmooth systems," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005725
    DOI: 10.1016/j.chaos.2021.111218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.