IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921005622.html
   My bibliography  Save this article

Uncertainty quantification for random Hamiltonian systems by using polynomial expansions and geometric integrators

Author

Listed:
  • Jornet, Marc

Abstract

Recent advances in the field of uncertainty quantification are based on achieving suitable functional representations of the solutions to random systems. This aims at improving the performance of Monte Carlo simulation, at least for low-dimensional problems and moderately large independent variable. One of these functional representations are the so-called generalized polynomial chaos (gPC) expansions, based upon orthogonal polynomial decompositions. When the input random parameters are independent (a germ), a Galerkin projection technique applied to the truncated gPC expansion is usually employed. This approach exhibits fast mean-square convergence for smooth dynamics, whenever applicable. However, the main difficulty arises when solving the Galerkin system for the gPC coefficients, which may rely on different solvers (algorithms and codes) than those for the original system. A recent contribution noticed that, for random Hamiltonian systems, the Galerkin system is Hamiltonian too. Thus, the well-known symplectic integrators can be applied. The present paper investigates random Hamiltonian systems in general, when the input random parameters may be non-independent. In such a case, polynomial expansions based on the canonical basis and an imitation of the Galerkin projection technique are proposed. The Hamiltonian structure of the original system is unfortunately not conserved, but volume preservation is. Hence volume-preserving integrators are of use. Numerical experiments suggest that the proposed polynomial expansions may be useful for fast and accurate uncertainty quantification.

Suggested Citation

  • Jornet, Marc, 2021. "Uncertainty quantification for random Hamiltonian systems by using polynomial expansions and geometric integrators," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005622
    DOI: 10.1016/j.chaos.2021.111208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jornet, Marc, 2022. "Uncertainty quantification by using Lie theory," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921005622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.