IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921003040.html
   My bibliography  Save this article

Blind extraction of ECG signals based on similarity in the phase space

Author

Listed:
  • Li, Yin
  • Li, Fagang
  • Lyu, Shanxiang
  • Xu, Meng
  • Wang, Shiyuan

Abstract

Electrocardiogram (ECG), as a biological signal that contains important information about the cardiac activities of heart, exhibits chaotic characteristics. Since a clean ECG signal is of vital importance in the diagnosis and analysis of heart diseases, we address the task of extracting ECG for a set of noisy observations. Based on the phase space similarity of ECG, we propose an objective called similarity index which fully describes this similarity. A low-complexity algorithm is presented for the similarity index. Simulation results confirm the effectiveness of the proposed method by making comparisons with conventional benchmarks.

Suggested Citation

  • Li, Yin & Li, Fagang & Lyu, Shanxiang & Xu, Meng & Wang, Shiyuan, 2021. "Blind extraction of ECG signals based on similarity in the phase space," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003040
    DOI: 10.1016/j.chaos.2021.110950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yibo & Jiang, Yi & Feng, Jiuchao & Wu, Lifu, 2016. "Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 12-16.
    2. Shang, Li-Jen & Shyu, Kuo-Kai, 2009. "A method for extracting chaotic signal from noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1120-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Jiarui & Lao, Huimin & Lyu, Shanxiang, 2023. "Compressed chaotic signal reconstruction based on deep learning," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Lou, Shuting & Deng, Jiarui & Lyu, Shanxiang, 2022. "Chaotic signal denoising based on simplified convolutional denoising auto-encoder," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong-Min Li & Yan-Feng Yang & Yang Zhou & Chun-Lai Li & Kun Qian & Zhao-Yu Li & Jian-Rong Du, 2019. "Dynamics and Synchronization of a Memristor-Based Chaotic System with No Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-11, October.
    2. Yuan, Fang & Xing, Guibin & Deng, Yue, 2023. "Flexible cascade and parallel operations of discrete memristor," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Lou, Shuting & Deng, Jiarui & Lyu, Shanxiang, 2022. "Chaotic signal denoising based on simplified convolutional denoising auto-encoder," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.