IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v147y2021ics0960077921003003.html
   My bibliography  Save this article

Order symmetry breaking and broad distribution of events in spiking neural networks with continuous membrane potential

Author

Listed:
  • Stucchi, Marco
  • Pittorino, Fabrizio
  • Volo, Matteo di
  • Vezzani, Alessandro
  • Burioni, Raffaella

Abstract

We introduce an exactly integrable version of the well-known leaky integrate-and-fire (LIF) model, with continuous membrane potential at the spiking event, the c-LIF. We investigate the dynamical regimes of a fully connected network of excitatory c-LIF neurons in the presence of short-term synaptic plasticity. By varying the coupling strength among neurons, we show that a complex chaotic dynamics arises, characterized by scale free avalanches. The origin of this phenomenon in the c-LIF can be related to the order symmetry breaking in neurons spike-times, which corresponds to the onset of a broad activity distribution. Our analysis uncovers a general mechanism through which networks of simple neurons can be attracted to a complex basin in the phase space.

Suggested Citation

  • Stucchi, Marco & Pittorino, Fabrizio & Volo, Matteo di & Vezzani, Alessandro & Burioni, Raffaella, 2021. "Order symmetry breaking and broad distribution of events in spiking neural networks with continuous membrane potential," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003003
    DOI: 10.1016/j.chaos.2021.110946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Lei & Guo, Minxin & Wu, Youxi & Xu, Guizhi, 2023. "Specific neural coding of fMRI spiking neural network based on time coding," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Guo, Lei & Liu, Chengjun & Wu, Youxi & Xu, Guizhi, 2023. "fMRI-based spiking neural network verified by anti-damage capabilities under random attacks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:147:y:2021:i:c:s0960077921003003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.