IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921000199.html
   My bibliography  Save this article

Control of coherence resonance in multiplex neural networks

Author

Listed:
  • Masoliver, Maria
  • Masoller, Cristina
  • Zakharova, Anna

Abstract

We study the dynamics of two neuronal populations weakly and mutually coupled in a multiplexed ring configuration. We simulate the neuronal activity with the stochastic FitzHugh–Nagumo (FHN) model. The two neuronal populations perceive different levels of noise: one population exhibits spiking activity induced by supra-threshold noise (layer 1), while the other population is silent in the absence of inter-layer coupling because its own level of noise is sub-threshold (layer 2). We find that, for appropriate levels of noise in layer 1, weak inter-layer coupling can induce coherence resonance (CR), anti-coherence resonance (ACR) and inverse stochastic resonance (ISR) in layer 2. We also find that a small number of randomly distributed inter-layer links is sufficient to induce these phenomena in layer 2. Our results hold for small and large neuronal populations.

Suggested Citation

  • Masoliver, Maria & Masoller, Cristina & Zakharova, Anna, 2021. "Control of coherence resonance in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921000199
    DOI: 10.1016/j.chaos.2021.110666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreev, Andrey V. & Makarov, Vladimir V. & Runnova, Anastasija E. & Pisarchik, Alexander N. & Hramov, Alexander E., 2018. "Coherence resonance in stimulated neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 80-85.
    2. Paul M. Geffert & Anna Zakharova & Andrea Vüllings & Wolfram Just & Eckehard Schöll, 2014. "Modulating coherence resonance in non-excitable systems by time-delayed feedback," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(12), pages 1-13, December.
    3. Wang, Zhen & Parastesh, Fatemeh & Rajagopal, Karthikeyan & Hamarash, Ibrahim Ismael & Hussain, Iqtadar, 2020. "Delay-induced synchronization in two coupled chaotic memristive Hopfield neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Anna Zakharova & Jürgen Kurths & Tatyana Vadivasova & Aneta Koseska, 2011. "Analysing Dynamical Behavior of Cellular Networks via Stochastic Bifurcations," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    5. Sun, Xiaojuan & Lu, Qishao & Kurths, Jürgen, 2008. "Correlated noise induced spatiotemporal coherence resonance in a square lattice network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6679-6685.
    6. Ghosh, Saptarshi & Zakharova, Anna & Jalan, Sarika, 2018. "Non-identical multiplexing promotes chimera states," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 56-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    2. Jia, Junen & Wang, Chunni & Zhang, Xiaofeng & Zhu, Zhigang, 2024. "Energy and self-adaption in a memristive map neuron," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semenov, Vladimir V., 2018. "Self-oscillation excitation under condition of positive dissipation in a state-dependent potential well," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 358-364.
    2. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    3. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    4. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Anwar, Md Sayeed & Kundu, Srilena & Ghosh, Dibakar, 2021. "Enhancing synchrony in asymmetrically weighted multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Semenov, Vladimir V. & Bukh, Andrei V. & Semenova, Nadezhda, 2023. "Delay-induced self-oscillation excitation in the Fitzhugh–Nagumo model: Regular and chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    10. Guo, Qin & Sun, Zhongkui & Xu, Wei, 2019. "Delay-induced transitions in the birhythmic biological model under joint noise sources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 337-348.
    11. Deng, Quanli & Wang, Chunhua & Lin, Hairong, 2024. "Memristive Hopfield neural network dynamics with heterogeneous activation functions and its application," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    12. Shepelev, I.A. & Vadivasova, T.E., 2020. "External localized harmonic influence on an incoherence cluster of chimera states," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    13. D’Onofrio, Giuseppe & Lansky, Petr & Tamborrino, Massimiliano, 2019. "Inhibition enhances the coherence in the Jacobi neuronal model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 108-113.
    14. Rybalova, E.V. & Strelkova, G.I. & Anishchenko, V.S., 2021. "Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Wang, Weiping & He, Chang & Wang, Zhen & Hramov, Alexander & Fan, Denggui & Yuan, Manman & Luo, Xiong & Kurths, Jürgen, 2021. "Dynamic analysis of synaptic loss and synaptic compensation in the process of associative memory ability decline in Alzheimer’s disease," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    17. Schülen, Leonhard & Janzen, David A. & Medeiros, Everton S. & Zakharova, Anna, 2021. "Solitary states in multiplex neural networks: Onset and vulnerability," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    20. Hramov, Alexander E. & Kulagin, Nikita & Andreev, Andrey V. & Pisarchik, Alexander N., 2024. "Forecasting coherence resonance in a stochastic Fitzhugh–Nagumo neuron model using reservoir computing," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921000199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.