IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077921000448.html
   My bibliography  Save this article

Maximal regularity result for a singular differential equation in the space of summable functions

Author

Listed:
  • Ospanov, K.N.

Abstract

We give sufficient conditions for the unique solvability and maximal regularity of a generalized solution of a second-order differential equation with unbounded diffusion, drift, and potential coefficients. We prove the compactness of the resolvent of the equation and an upper bound for the Kolmogorov widths of the set of solutions. It is assumed that the intermediate coefficient grows quickly and does not depend on the growth of potential. The diffusion coefficient is positive and can grow or disappear near infinity, i.e. the equation under consideration can degenerate. The study of such equation is motivated by applications in stochastic processes and financial mathematics.

Suggested Citation

  • Ospanov, K.N., 2021. "Maximal regularity result for a singular differential equation in the space of summable functions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000448
    DOI: 10.1016/j.chaos.2021.110691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.