IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077921000242.html
   My bibliography  Save this article

A new fractal pattern feature generation function based emotion recognition method using EEG

Author

Listed:
  • Tuncer, Turker
  • Dogan, Sengul
  • Subasi, Abdulhamit

Abstract

Electroencephalogram (EEG) signal analysis is one of the mostly studied research areas in biomedical signal processing, and machine learning. Emotion recognition through machine intelligence plays critical role in understanding the brain activities as well as in developing decision-making systems. In this research, an automated EEG based emotion recognition method with a novel fractal pattern feature extraction approach is presented. The presented fractal pattern is inspired by Firat University Logo and named fractal Firat pattern (FFP). By using FFP and Tunable Q-factor Wavelet Transform (TQWT) signal decomposition technique, a multilevel feature generator is presented. In the feature selection phase, an improved iterative selector is utilized. The shallow classifiers have been considered to denote the success of the presented TQWT and FFP based feature generation. This model has been tested on emotional EEG signals with 14 channels using linear discriminant (LDA), k-nearest neighborhood (k-NN), support vector machine (SVM). The proposed framework achieved 99.82% with SVM classifier.

Suggested Citation

  • Tuncer, Turker & Dogan, Sengul & Subasi, Abdulhamit, 2021. "A new fractal pattern feature generation function based emotion recognition method using EEG," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000242
    DOI: 10.1016/j.chaos.2021.110671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921000242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jia-Yi & Cai, Qing & An, Jian-Peng & Chen, Pei-Yin & Ma, Chao & Wan, Jun-He & Gao, Zhong-Ke, 2022. "A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077921000242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.