IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309693.html
   My bibliography  Save this article

Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation

Author

Listed:
  • Jhangeer, Adil
  • Hussain, Amjad
  • Junaid-U-Rehman, M.
  • Baleanu, Dumitru
  • Riaz, Muhammad Bilal

Abstract

In this paper, the nonlinear modified Gardner (mG) equation is under consideration which represents the super nonlinear proliferation of the ion-acoustic waves and quantum electron-positronion magneto plasmas. The considered model is investigated with the help of Lie group analysis. Lie point symmetries are computed under the invariance criteria of Lie groups and symmetry group for each generator is reported. Furthermore, the one-dimensional optimal system of subalgebras is developed by adjoint technique and then we compute the similarity reductions corresponding to each vector field present in the optimal system, with the help of similarity reduction method we have to convert the PDE into the ODE. Some exact explicit solutions of obtained ordinary differential equations were constructed by the power series technique. With the aid of the Galilean transformation, the model is transformed into a planer dynamical system and the bifurcation behaviour is recorded. All practicable types of phase portraits with regard to the parameters of the problem considered are plotted. Meantime, sensitivity is observed by utilizing sensitivity analysis. In addition, the influence of physical parameters is studied by the application of an extrinsic periodic power. With additional perturbed term, quasi-periodic and quasi-periodic-chaotic behaviours is reported.

Suggested Citation

  • Jhangeer, Adil & Hussain, Amjad & Junaid-U-Rehman, M. & Baleanu, Dumitru & Riaz, Muhammad Bilal, 2021. "Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309693
    DOI: 10.1016/j.chaos.2020.110578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wazwaz, Abdul-Majid, 2005. "The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations," Chaos, Solitons & Fractals, Elsevier, vol. 25(1), pages 55-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kudryashov, Nikolay A. & Kutukov, Aleksandr A. & Biswas, Anjan & Zhou, Qin & Yıldırım, Yakup & Alshomrani, Ali Saleh, 2023. "Optical solitons for the concatenation model: Power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Weifang Yan & Linlin Wang & Min Zhang, 2024. "Existence of Kink and Antikink Wave Solutions of Singularly Perturbed Modified Gardner Equation," Mathematics, MDPI, vol. 12(6), pages 1-9, March.
    3. Hassan Almusawa & Adil Jhangeer, 2024. "Exploring Wave Interactions and Conserved Quantities of KdV–Caudrey–Dodd–Gibbon Equation Using Lie Theory," Mathematics, MDPI, vol. 12(14), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    2. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    3. Zhou, Jiangrui & Zhou, Rui & Zhu, Shihui, 2020. "Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Lv, Xiumei & Lai, Shaoyong & Wu, YongHong, 2009. "An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 82-90.
    5. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    6. Patra, A. & Baliarsingh, P. & Dutta, H., 2022. "Solution to fractional evolution equation using Mohand transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 557-570.
    7. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.