IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920307244.html
   My bibliography  Save this article

Elliptic gradient estimates for a nonlinear f-heat equation on weighted manifolds with evolving metrics and potentials

Author

Listed:
  • Abolarinwa, Abimbola
  • Taheri, Ali

Abstract

We develop local elliptic gradient estimates for a basic nonlinear f-heat equation with a logarithmic power nonlinearity and establish pointwise upper bounds on the weighted heat kernel, all in the context of weighted manifolds, where the metric and potential evolve under a Perelman-Ricci type flow. For the heat bounds use is made of entropy monotonicity arguments and ultracontractivity estimates with the bounds expressed in terms of the optimal constant in the logarithmic Sobolev inequality. Some interesting consequences of these estimates are presented and discussed.

Suggested Citation

  • Abolarinwa, Abimbola & Taheri, Ali, 2021. "Elliptic gradient estimates for a nonlinear f-heat equation on weighted manifolds with evolving metrics and potentials," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307244
    DOI: 10.1016/j.chaos.2020.110329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920307244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiang-Dong, 2016. "Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1264-1283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue-Mei & Thompson, James, 2018. "First order Feynman–Kac formula," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3006-3029.
    2. Kuwae, Kazuhiro & Li, Songzi & Li, Xiang-Dong & Sakurai, Yohei, 2024. "Liouville theorem for V-harmonic maps under non-negative (m,V)-Ricci curvature for non-positive m," Stochastic Processes and their Applications, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920307244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.