IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306664.html
   My bibliography  Save this article

Non-equilibrium phase transition in the heterogenous TASEPs with binding and unbinding processes among the adjacent subsystems

Author

Listed:
  • Wang, Yu-Qing
  • Zhang, Zi-Huan
  • Wang, Bing-Hong

Abstract

Non-equilibrium phase transition is always one of the most important issue for complexity science, since it can reveal physical mechanisms of abundant physical phenomena. Exploring applications of non-equilibrium phase transitions in basic paradigm models of complexity science is vital for better comprehending essences of real physical processes. Among these processes, totally asymmetric simple exclusion process (TASEP) stands out owing to important theoretical significances and practical value, whose importance is regarded as being equivalent to Ising model. In this paper, a heterogeneous interacting particle system constituted by three-lane TASEPs with binding and unbinding processes affected by interacting energies among adjacent subsystems is proposed. Nonlinear equations about all particle configuration states of boundaries and bulk are established. We find and analyze numerical local densities and currents by performing simple and cluster mean-field analyses. Nine species of phases including homogeneous phases and mixed ones are discovered. Specifically, as for mixed phases, densities of middle channel are much larger and smaller than those of neighboring ones when specific interacting energy is positive and negative, respectively. All triple points are found to move to upper left corner of phase space with increasing interacting energy. Current phase diagrams mapped into density phase ones are explored, which reveal currents in homogenous phases rely on just one critical governing parameter (namely, injecting rate or escaping one) while those in mixed phases are controlled by the coupling effects of these two critical governing rates. Theoretical results from mean-field analyses are confirmed by simulations, which yield to fine coincidences. This work will improve understanding of non-equilibrium phase transition mechanisms in such basic paradigm models and stochastic dynamics in corresponding critical phenomena to a certain extent, especially cluster effects and related dynamic processes of self-driven particles in such systems in the area of complex system science and statistical physics at mesoscopic scale.

Suggested Citation

  • Wang, Yu-Qing & Zhang, Zi-Huan & Wang, Bing-Hong, 2020. "Non-equilibrium phase transition in the heterogenous TASEPs with binding and unbinding processes among the adjacent subsystems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306664
    DOI: 10.1016/j.chaos.2020.110270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindal, Akriti & Gupta, Arvind Kumar, 2021. "Effect of local dissociation on symmetry breaking in exclusion model constituted by bridge lane and input-output TASEPs," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.