IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305907.html
   My bibliography  Save this article

COVID-19 interventions in some European countries induced bifurcations stabilizing low death states against high death states: An eigenvalue analysis based on the order parameter concept of synergetics

Author

Listed:
  • Frank, T.D.

Abstract

Taking a dynamical systems perspective, COVID-19 infections are assumed to spread out in a human population via an instability. Conversely, government interventions to reduce the spread of the disease and the number of fatalities may induce a bifurcation that stabilizes a desirable state with low numbers of COVID-19 cases and associated deaths. The key characteristic feature of an infection dynamical system in this context is the eigenvalue that determines the stability of the states under consideration and is known in synergetics as the order parameter eigenvalue. Using a SEIR-like infection disease model, the relevant order parameter and its eigenvalue are determined. A three stage methodology is proposed to track and estimate the eigenvalue through time. The method is applied to COVID-19 infection data reported from 20 European countries during the period of January 1, 2020 to June 15. It is shown that in 15 out of the 20 countries the eigenvalue switched its sign suggesting that during the reporting period an intervention bifurcation took place that stabilized the desirable low death state. It is shown that the eigenvalue analysis also allows for a ranking of countries by the degree of the stability of the infection-free state. For the investigated countries, Ireland was found to exhibit the most stable infection-free state. Finally, a six point classification scheme is suggested with groups 5 and 6 including countries that failed to stabilize the desirable infection-free low death state. In doing so, tools for assessing the effectiveness of government interventions are provided that are at the heart of bifurcation theory, in general, and synergetics, in particular.

Suggested Citation

  • Frank, T.D., 2020. "COVID-19 interventions in some European countries induced bifurcations stabilizing low death states against high death states: An eigenvalue analysis based on the order parameter concept of synergetic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305907
    DOI: 10.1016/j.chaos.2020.110194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arno Steinacher & Kim A Wright, 2013. "Relating the Bipolar Spectrum to Dysregulation of Behavioural Activation: A Perspective from Dynamical Modelling," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-10, May.
    2. Till D. Frank, 2016. "Unstable Modes and Order Parameters of Bistable Signaling Pathways at Saddle-Node Bifurcations: A Theoretical Study Based on Synergetics," Advances in Mathematical Physics, Hindawi, vol. 2016, pages 1-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Arghya & Dhar, Abhishek & Goyal, Srashti & Kundu, Anupam & Pandey, Saurav, 2021. "COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305907. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.