IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305130.html
   My bibliography  Save this article

Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series

Author

Listed:
  • Wang, Yong
  • Zang, Shuying
  • Tian, Yang

Abstract

Rice production is very important for national food security in China. Time series vegetation indices and phenology-based algorithms have been utilized to map paddy rice fields by identifying the flooding and seedling transplanting phases from multitemporal moderate-resolution (500 m to 1 km) images. Satellite imagery in other electromagnetic spectrum such as microwave region provides supplementary information about land surface characteristics such as soil moisture, which may improve the accuracy of rice mapping. In this study, we developed a method for identifying paddy rice at the regional scale based on the potential relationship between soil moisture and crop growth. Random forest classification optimized by the coordinate descent algorithm was used to generate a 500 m resolution paddy rice map with time series downscaled soil moisture based on Soil Moisture Active Passive (SMAP) images and Moderate Resolution Imaging Spectroradiometer (MODIS) images of the northern Songnen Plain in Northeast China-one of the major paddy rice cultivation regions in China. A combination of the Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), Phenological Parameters (PH), and Soil Moisture (SM) was used to identify the rice fields during the flooding/transplanting and ripening phases. Two scenarios (EVI+LSWI+PH and EVI+LSWI+PH+SM as the input parameters) were developed to extract the paddy rice from the images. A comparison of the two identification scenarios indicated that the addition of the soil moisture to the combination achieved higher identification accuracy, especially at the junction of the different crop phases. The proposed method could be beneficial to researchers attempting to improve the accuracy of paddy rice identification at regional scale.

Suggested Citation

  • Wang, Yong & Zang, Shuying & Tian, Yang, 2020. "Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305130
    DOI: 10.1016/j.chaos.2020.110116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu Xiao & Wenqi Chen & Tingting He & Linlin Ruan & Jiwang Guo, 2020. "Multi-Temporal Mapping of Soil Total Nitrogen Using Google Earth Engine across the Shandong Province of China," Sustainability, MDPI, vol. 12(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.