IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920304045.html
   My bibliography  Save this article

A novel mathematics model of covid-19 with fractional derivative. Stability and numerical analysis

Author

Listed:
  • Alkahtani, Badr Saad T.
  • Alzaid, Sara Salem

Abstract

a mathematical model depicting the spread of covid-19 epidemic and implementation of population covid-19 intervention in Italy. The model has 8 components leading to system of 8 ordinary differential equations. In this paper, we investigate the model using the concept of fractional differential operator. A numerical method based on the Lagrange polynomial was used to solve the system equations depicting the spread of COVID-19. A detailed investigation of stability including reproductive number using the next generation matrix, and the Lyapunov were presented in detail. Numerical simulations are depicted for various fractional orders.

Suggested Citation

  • Alkahtani, Badr Saad T. & Alzaid, Sara Salem, 2020. "A novel mathematics model of covid-19 with fractional derivative. Stability and numerical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304045
    DOI: 10.1016/j.chaos.2020.110006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed Kizito & Julius Tumwiine, 2018. "A Mathematical Model of Treatment and Vaccination Interventions of Pneumococcal Pneumonia Infection Dynamics," Journal of Applied Mathematics, Hindawi, vol. 2018, pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Fernando Brambila-Paz & Antonio Quevedo, 2021. "Fractional Growth Model Applied to COVID-19 Data," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    2. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Yang, Bo & Yu, Zhenhua & Cai, Yuanli, 2022. "The impact of vaccination on the spread of COVID-19: Studying by a mathematical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    4. Aljoudi, Shorog, 2021. "Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Yasmin, Humaira, 2022. "Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920304045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.