IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303519.html
   My bibliography  Save this article

Enhanced logical vibrational resonance in a two-well potential system

Author

Listed:
  • Gui, Rong
  • Wang, Yue
  • Yao, Yuangen
  • Cheng, Guanghui

Abstract

Various external driving forces can induce logical stochastic or vibrational resonance, such as noise, harmonics, and the combination of noise and harmonics. In engineering, using harmonics as driving force is more conducive to the control of logic operations, while a wider optimal parameter region and a shorter switching time are expected in practice to improve the robustness and response speed of system. Here, we report the logical vibrational resonance in a two-well potential system subjected to biharmonics. Our results show that the variable frequency (VF) (one harmonic) could broaden the optimal parameter region when an appropriate weak long-period signal is chosen as the fundamental frequency (FF) (the other harmonic). An intuitive interpretation for LVR is given by means of bifurcation and potential well diagrams. In addition, according to dynamic potential wells varying with input signal, four different kinds of switching modes are presented, and the switching time presents differences for different switching modes. There may be a trade-off between fast response and the robustness of system. Noise obviously affects the optimal parameter region of VF and the switching time. Finally, some results are further verified by circuit simulation.

Suggested Citation

  • Gui, Rong & Wang, Yue & Yao, Yuangen & Cheng, Guanghui, 2020. "Enhanced logical vibrational resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303519
    DOI: 10.1016/j.chaos.2020.109952
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Wu, Juan & Xu, Yong & Ma, Shaojuan, 2019. "Realizing the transformation of logic gates in a genetic toggle system under Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 171-179.
    3. Ning, Lijuan & Xu, Wei, 2007. "Stochastic resonance in linear system driven by multiplicative and additive noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 415-422.
    4. Yuangen Yao & Lijian Yang & Canjun Wang & Quan Liu & Rong Gui & Juan Xiong & Ming Yi, 2018. "Subthreshold Periodic Signal Detection by Bounded Noise-Induced Resonance in the FitzHugh–Nagumo Neuron," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    5. Zhang, Lei & Song, Aiguo, 2018. "Realizing reliable logical stochastic resonance under colored noise by adding periodic force," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 958-968.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Guanghui & Li, Dan & Yao, Yuangen & Gui, Rong, 2023. "Multi-scroll chaotic attractors with multi-wing via oscillatory potential wells," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Usama, B.I. & Morfu, S. & Marquie, P., 2021. "Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Jiang, Jiahao & Li, Kaiyuan & Guo, Wei & Du, Luchun, 2021. "Energetic and entropic vibrational resonance," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Gui, Rong & Li, Jiaxin & Yao, Yuangen & Cheng, Guanghui, 2021. "Effect of time-delayed feedback in a bistable system inferred by logic operation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Yao, Yuangen & Ma, Jun & Gui, Rong & Cheng, Guanghui, 2021. "Chaos-induced Set–Reset latch operation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Guanghui & Liu, Weidan & Gui, Rong & Yao, Yuangen, 2020. "Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Yao, Yuangen & Ma, Jun & Gui, Rong & Cheng, Guanghui, 2021. "Chaos-induced Set–Reset latch operation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Gui, Rong & Li, Jiaxin & Yao, Yuangen & Cheng, Guanghui, 2021. "Effect of time-delayed feedback in a bistable system inferred by logic operation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Wang, Xueqin & Yu, Dong & Li, Tianyu & Jia, Ya, 2023. "Logistic stochastic resonance in the Hodgkin–Huxley neuronal system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Chao Zhang & Haoran Duan & Yu Xue & Biao Zhang & Bin Fan & Jianguo Wang & Fengshou Gu, 2020. "The Enhancement of Weak Bearing Fault Signatures by Stochastic Resonance with a Novel Potential Function," Energies, MDPI, vol. 13(23), pages 1-15, December.
    7. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    10. Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Cheng, Guanghui & Gui, Rong, 2022. "Bistable chaotic family and its chaotic mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Erkan, Erdem, 2023. "Signal encoding performance of astrocyte-dressed Morris Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    13. Cheng, Guanghui & Gui, Rong & Yao, Yuangen & Yi, Ming, 2019. "Enhancement of temporal regularity and degradation of spatial synchronization induced by cross-correlated sine-Wiener noises in regular and small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 361-369.
    14. Zhu, Ping, 2021. "An equivalent analytical method to deal with cross-correlated exponential type noises in the nonlinear dynamic system," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.