IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics0960077920302472.html
   My bibliography  Save this article

Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data

Author

Listed:
  • Can, Nguyen Huu
  • Zhou, Yong
  • Tuan, Nguyen Huy
  • Thach, Tran Ngoc

Abstract

In this paper, we consider a multi-dimensional fractional pseudo-parabolic problem with nonlinear source in case the input data is measured on a discrete set of points instead of the whole domain. For any number of dimensions, the solution is not stable. This makes the problem we are interested in be ill-posed. Here, we construct regularized solutions for this problem in two cases of number of dimensions (denoted by m) including m=2 and m is arbitrary. In each case, we show the uniqueness of the regularized solution and give the error estimates. Finally, the convergence rate is also investigated numerically.

Suggested Citation

  • Can, Nguyen Huu & Zhou, Yong & Tuan, Nguyen Huy & Thach, Tran Ngoc, 2020. "Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302472
    DOI: 10.1016/j.chaos.2020.109847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Xiaoli & Li, Fuyi & Li, Yuhua, 2018. "Global solutions and blow up solutions to a class of pseudo-parabolic equations with nonlocal term," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 38-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phuong, Nguyen Duc & Tuan, Nguyen Huy & Hammouch, Zakia & Sakthivel, Rathinasamy, 2021. "On a pseudo-parabolic equations with a non-local term of the Kirchhoff type with random Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.