IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v134y2020ics0960077920301211.html
   My bibliography  Save this article

A symbiosis between cellular automata and genetic algorithms

Author

Listed:
  • Cerruti, Umberto
  • Dutto, Simone
  • Murru, Nadir

Abstract

Cellular automata are systems which use a rule to describe the evolution of a population in a discrete lattice, while genetic algorithms are procedures designed to find solutions to optimization problems inspired by the process of natural selection. In this paper, we introduce an original implementation of a cellular automaton whose rules use a fitness function to select for each cell the best mate to reproduce and a crossover operator to determine the resulting offspring. This new system, with a proper definition, can be both a cellular automaton and a genetic algorithm. We show that in our system the Conway’s Game of Life can be easily implemented and, consequently, it is capable of universal computing. Moreover two generalizations of the Game of Life are created and also implemented with it. Finally, we use our system for studying and implementing the prisoner’s dilemma and rock-paper-scissors games, showing very interesting behaviors and configurations (e.g., gliders) inside these games.

Suggested Citation

  • Cerruti, Umberto & Dutto, Simone & Murru, Nadir, 2020. "A symbiosis between cellular automata and genetic algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301211
    DOI: 10.1016/j.chaos.2020.109719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alonso-Sanz, Ramón, 2007. "A structurally dynamic cellular automaton with memory," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1285-1295.
    2. Mirzaee, Hossein, 2009. "Linear combination rule in genetic algorithm for optimization of finite impulse response neural network to predict natural chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2681-2689.
    3. Ludo Pagie & Melanie Mitchell, 2002. "A Comparison of Evolutionary and Coevolutionary Search," Working Papers 02-01-002, Santa Fe Institute.
    4. Reiter, Clifford A., 2011. "Cyclic cellular automata in 3D," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 764-768.
    5. Wei, Jinling & Zhou, Haiyan & Meng, Jun & Zhang, Fan & Chen, Yunmo & Zhou, Su, 2016. "The SOC in cells’ living expectations of Conway’s Game of Life and its extended version," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 348-352.
    6. Wu, Ming-Sheng & Teng, Wei-Chih & Jeng, Jyh-Horng & Hsieh, Jer-Guang, 2006. "Spatial correlation genetic algorithm for fractal image compression," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 497-510.
    7. Raptis, Theophanes E., 2016. "Spectral representations and global maps of cellular automata dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 503-510.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras-Reyes, Javier E., 2021. "Lerch distribution based on maximum nonsymmetric entropy principle: Application to Conway’s game of life cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Juan Carlos Seck-Tuoh-Mora & Joselito Medina-Marin & Norberto Hernández-Romero & Genaro J. Martínez, 2023. "Mean-Field Analysis with Random Perturbations to Detect Gliders in Cellular Automata," Mathematics, MDPI, vol. 11(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Contreras-Reyes, Javier E., 2021. "Lerch distribution based on maximum nonsymmetric entropy principle: Application to Conway’s game of life cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Chapeau-Blondeau, François & Chauveau, Julien & Rousseau, David & Richard, Paul, 2009. "Fractal structure in the color distribution of natural images," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 472-482.
    3. Zhou, Yi-Ming & Zhang, Chao & Zhang, Zeng-Ke, 2009. "An efficient fractal image coding algorithm using unified feature and DCT," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1823-1830.
    4. Xu, Junkang & Li, Erlin & Chen, Fangyue & Jin, Weifeng, 2018. "Chaotic properties of elementary cellular automata with majority memory," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 84-95.
    5. Muzy, A. & Nutaro, J.J. & Zeigler, B.P. & Coquillard, P., 2008. "Modeling and simulation of fire spreading through the activity tracking paradigm," Ecological Modelling, Elsevier, vol. 219(1), pages 212-225.
    6. Lien, Chang-Hua, 2007. "Delay-dependent and delay-independent guaranteed cost control for uncertain neutral systems with time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1017-1027.
    7. Chiou, Juing-Shian & Cheng, Chun-Ming, 2009. "Stabilization analysis of the switched discrete-time systems using Lyapunov stability theorem and genetic algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 751-759.
    8. Lu, Jian & Ye, Zhongxing & Zou, Yuru & Ye, Ruisong, 2008. "An enhanced fractal image denoising algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1054-1064.
    9. Chauveau, Julien & Rousseau, David & Richard, Paul & Chapeau-Blondeau, François, 2010. "Multifractal analysis of three-dimensional histogram from color images," Chaos, Solitons & Fractals, Elsevier, vol. 43(1), pages 57-67.
    10. Chen, Zuoping & Ye, Zhenglin & Wang, Shuxun & Peng, Guohua, 2009. "Image magnification based on similarity analogy," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2370-2375.
    11. Zhou, Yi-Ming & Zhang, Chao & Zhang, Zeng-Ke, 2008. "Fast hybrid fractal image compression using an image feature and neural network," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 623-631.
    12. Akemi Gálvez & Iztok Fister & Andrés Iglesias & Iztok Fister & Valentín Gómez-Jauregui & Cristina Manchado & César Otero, 2022. "IFS-Based Image Reconstruction of Binary Images with Functional Networks," Mathematics, MDPI, vol. 10(7), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.