IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305107.html
   My bibliography  Save this article

Generalized synchronization of regulate seizures dynamics in partial epilepsy with fractional-order derivatives

Author

Listed:
  • Tene, Alain Giresse
  • Tchoffo, Martin
  • Tabi, Bertrand Conrad
  • Kofane, Timoleon Crepin

Abstract

The dynamical behavior and the synchronization of epileptic seizure dynamics, with fractional-order derivatives, is studied in this paper. Knowing that the dynamical properties of ictal electroencephalogram signal recordings during experiments displays complex nonlinear behaviors, we analyze the system from chaos theory point of view. Based on stability analysis, the system presents three equilibrium points with two of them unstable. Moreover, the system reveals attractor points from the phase portrait analysis. In addition, the largest Lyapunov exponent displays positive values after a given period of time. These observations characterize a chaotic behavior of epileptic seizure dynamics. Therefore, based on the Ge-Yao-Chen partial region stability theory, the synchronization of the system is achieved and simulations prove that the control technique is very efficient. Further studies based on phase synchronization show that we are able to force infected population of neurons by epilepsy into synchronization with uninfected one through a coupling constant. In addition, based on the phase locking value time evolution (phase synchronization) of the system, we realize that fractional-order derivative induces quick synchronization compared to integer order derivative. These results might be very interesting from the medical point of view, because by applying the proposed control method, one may be able to regulate (or reduce) seizure amplitude which, if kindly implemented in practice, will provide excellent therapeutic solution to drug resistant patients with epilepsy.

Suggested Citation

  • Tene, Alain Giresse & Tchoffo, Martin & Tabi, Bertrand Conrad & Kofane, Timoleon Crepin, 2020. "Generalized synchronization of regulate seizures dynamics in partial epilepsy with fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305107
    DOI: 10.1016/j.chaos.2019.109553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romanic Kengne & Robert Tchitnga & Alain Kammogne Soup Tewa & Grzegorz Litak & Anaclet Fomethe & Chunlai Li, 2018. "Fractional-order two-component oscillator: stability and network synchronization using a reduced number of control signals," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305107. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.