IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919304771.html
   My bibliography  Save this article

Stability of compact breathers in translationally-invariant nonlinear chains with flat dispersion bands

Author

Listed:
  • Perchikov, Nathan
  • Gendelman, O.V.

Abstract

The paper addresses compact oscillatory states (compact breathers) in translationally-invariant lattices with flat dispersion bands. The compact breathers appear in such systems even in the linear approximation. If the interactions are nonlinear, but comply with the flat-band symmetry, the compact breather solutions exist, but can lose their stability for certain parameter values. As benchmark nonlinear potentials, we use the β-FPU (Fermi-Pasta-Ulam) and vibro-impact models. Loss of stability is numerically observed to occur through either pitchfork or Hopf bifurcations. The loss of stability can occur through two qualitatively different mechanisms – through internal instability in the basic lattice elements, or through interaction of the compact breather with the linear passband of the lattice. The former scenario is more typical for high-amplitude breathers, and the latter – for low amplitudes. For the high-amplitude case, insights into the nature of compact-mode loss-of-stability are obtained by resorting to the limit of a piecewise-linear system, where interactions are represented by conservative impacts. This issue calls for detailed introspection into integrability of piecewise-linear (impacting) systems and their relation to the smooth system. An idea for a sensor based on the studied mechanisms is suggested.

Suggested Citation

  • Perchikov, Nathan & Gendelman, O.V., 2020. "Stability of compact breathers in translationally-invariant nonlinear chains with flat dispersion bands," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919304771
    DOI: 10.1016/j.chaos.2019.109526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jingyu & Li, Xuefeng & Li, Renfu & Dai, Lu & Wang, Wei & Yang, Kai, 2021. "Internal resonance of a two-degree-of-freedom tuned bistable electromagnetic actuator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919304771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.