IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics0960077919303923.html
   My bibliography  Save this article

Thermodynamics of DNA denaturation in a model of bacterial intergenic sequences

Author

Listed:
  • Lenzini, Leonardo
  • Patti, Francesca Di
  • Lepri, Stefano
  • Livi, Roberto
  • Luccioli, Stefano

Abstract

We present a detailed investigation of the denaturation process for intergenic sequences of several bacterial species. The reason for analyzing these specific sequences is that these regions are expected to be denaturated to allow for the intrusion of the transcription factors performing the transcription process of genes. Our study relies upon a well known dynamical model of the DNA double-strand proposed by Dauxois-Peyrard-Bishop [44], applied to the collection of intergenic regions from bacterial species. We have performed extended numerical simulations in the presence of a thermostat (canonical setup) and we have found that all of these indicators essentially identify a typical denaturation temperature. This confirms the reliability and robustness of the denaturation thermodynamics described by this model. We want to remark also that the actual value of the denaturation temperature, as expected, varies from species to species, because of the different structural features of the corresponding intergenic sequences. Another important result reported in this manuscript is that the comparison with simulations in the absence of a thermostat (microcanonical setup) yields sensibly higher, irrealistic denaturation temperatures, thus providing evidence that thermal fluctuations play a crucial role in the cooperative effect yielding the denaturation process.

Suggested Citation

  • Lenzini, Leonardo & Patti, Francesca Di & Lepri, Stefano & Livi, Roberto & Luccioli, Stefano, 2020. "Thermodynamics of DNA denaturation in a model of bacterial intergenic sequences," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303923
    DOI: 10.1016/j.chaos.2019.109446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303923
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.