IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v130y2020ics096007791930356x.html
   My bibliography  Save this article

Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions

Author

Listed:
  • Waqas, M.
  • Khan, M. Ijaz
  • Hayat, T.
  • Gulzar, M. Mudassar
  • Alsaedi, A.

Abstract

These days, the most important requirement of contemporary technological activities is extraordinary performance chilling for standard construction. Weaker thermal transference is meaningful issue to keep the extraordinary performance chilling throughout manufacturing systems. This difficulty can be determined by the nanoparticles submersion. Thus, a rheological model featuring thermophoretic and Brownian diffusions is introduced to formulate the two-dimensional viscoelastic (second-grade) nanoliquid flow considering mixed convection and magnetohydrodynamics. Modeling subject to viscous dissipation, convective conditions, Joule heating, heat absorption/generation, stratifications and radiation aspects is presented. Non-dimensionalization process is performed introducing apposite variables. Homotopy algorithm is opted for nonlinear analysis. Graphs are exhibited for interpretation of distinct variables influence against dimensionless quantities. We found opposing behavior for radiation and thermal stratification variables against thermal field.

Suggested Citation

  • Waqas, M. & Khan, M. Ijaz & Hayat, T. & Gulzar, M. Mudassar & Alsaedi, A., 2020. "Transportation of radiative energy in viscoelastic nanofluid considering buoyancy forces and convective conditions," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s096007791930356x
    DOI: 10.1016/j.chaos.2019.109415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007791930356X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hayat, T. & Abbas, Z. & Sajid, M., 2009. "MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 840-848.
    2. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.
    3. Iqbal, Z. & Azhar, Ehtsham & Maraj, E.N., 2018. "Radiative energy transportation of nanoscale particles towards bilinear stretching surface with convective mass transfer," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Yu-Ming & Shankaralingappa, B.M. & Gireesha, B.J. & Alzahrani, Faris & Khan, M. Ijaz & Khan, Sami Ullah, 2022. "Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface," Applied Mathematics and Computation, Elsevier, vol. 419(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed M. Hussain & Rohit Sharma & Manas R. Mishra & Sattam S. Alrashidy, 2020. "Hydromagnetic Dissipative and Radiative Graphene Maxwell Nanofluid Flow Past a Stretched Sheet-Numerical and Statistical Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    2. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    3. Asifa Tassaddiq, 2020. "A New Representation of the Generalized Krätzel Function," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    4. Hayat, T. & Abbas, Z. & Javed, T. & Sajid, M., 2009. "Three-dimensional rotating flow induced by a shrinking sheet for suction," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1615-1626.
    5. Tassaddiq, Asifa & Khan, I. & Nisar, K.S., 2020. "Heat transfer analysis in sodium alginate based nanofluid using MoS2 nanoparticles: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s096007791930356x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.