IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v125y2019icp139-145.html
   My bibliography  Save this article

A behavioral analysis of KdVB equation under the law of Mittag–Leffler function

Author

Listed:
  • Doungmo Goufo, Emile F.
  • Tenkam, H.M.
  • Khumalo, M.

Abstract

The literature on fluid dynamics shows that there still exist number of unusual irregularities observed in wave motions described by the Korteweg–de Vries equation, Burgers equation or the combination of both, called Korteweg–de Vries–Burgers (KdVB) equation. In order to widen the studies in the topic and bring more clearness in the wave dynamics, we extend and analyze the KdVB-equation with two levels of perturbation. We combine the model with one of the fractional derivatives with Mittag–Leffler Kernel, namely the Caputo sense derivative with non-singular and non-local kernel (known as ABC-derivative (Atangana–Beleanu–Caputo)). After a brief look at the dynamics of standard integer KdVB-equation, we analyze the combined fractional KdVB-equation by showing its existence and uniqueness results. Numerical simulations using the fundamental theorem of fractional calculus show that the dynamics for the combined model is similar to the integer order dynamics, but highly parameterized and controlled by the order of the fractional derivative with Mittag–Leffler Kernel.

Suggested Citation

  • Doungmo Goufo, Emile F. & Tenkam, H.M. & Khumalo, M., 2019. "A behavioral analysis of KdVB equation under the law of Mittag–Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 139-145.
  • Handle: RePEc:eee:chsofr:v:125:y:2019:i:c:p:139-145
    DOI: 10.1016/j.chaos.2019.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghi, S. & Jafari, H. & Nemati, S., 2020. "Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:125:y:2019:i:c:p:139-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.