IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v123y2019icp356-360.html
   My bibliography  Save this article

Fractional calculus in abstract space and its application in fractional Dirichlet type problems

Author

Listed:
  • Peichen, Zhao
  • Qi, Yue

Abstract

With the development of nonlinear science, it is found that the fractional differential equation can more accurately describe the variation of natural phenomena.Therefore, the study of fractional differential equations and their boundary value problems is of great significance for solving nonlinear problems.The Dirichlet function, as an abstract mathematical model, has many unique properties in calculus.It points out special circumstances when describing many mathematical concepts, It can also be used to construct counterexamples in calculus and to clarify many fuzzy concepts to deepen the understanding of mathematical concepts.Therefore, this paper mainly studies the necessary and sufficient conditions for the controllability of fractional linear differential systems in abstract space.The finite difference decomposition method of fractional calculus in the abstract space for the Dirichlet function equation is also studied.The existence of solutions for boundary value problems of fractional differential equations with Dirichlet boundary value condition in the abstract space is discussed by using the critical point theory.

Suggested Citation

  • Peichen, Zhao & Qi, Yue, 2019. "Fractional calculus in abstract space and its application in fractional Dirichlet type problems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 356-360.
  • Handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:356-360
    DOI: 10.1016/j.chaos.2019.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bashir Ahmad & Sotiris K. Ntouyas, 2014. "An Existence Theorem for Fractional Hybrid Differential Inclusions of Hadamard Type with Dirichlet Boundary Conditions," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ávalos-Ruiz, L.F. & Gómez-Aguilar, J.F. & Atangana, A. & Owolabi, Kolade M., 2019. "On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 364-388.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Hannabou & Hilal Khalid, 2019. "Investigation of a Mild Solution to Coupled Systems of Impulsive Hybrid Fractional Differential Equations," International Journal of Differential Equations, Hindawi, vol. 2019, pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:356-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.