IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp6-16.html
   My bibliography  Save this article

Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes

Author

Listed:
  • Gusso, André
  • Viana, Ricardo L.
  • Mathias, Amanda C.
  • Caldas, Iberê L.

Abstract

We investigate theoretically the nonlinear dynamics and the emergence of chaos in suspended beam micro/nanoelectromechanical (MEMS/NEMS) resonators actuated by two-sided electrodes. Through the analysis of phase diagrams we have found that the system presents a rich and complex nonlinear behavior. Multistability is observed in a significant region of the relevant parameter space, involving periodic and chaotic attractors. Complex and varied routes to chaos were also found. Basins of attraction with strongly intermingled attractors provide further evidence of multistability. The basins are analyzed in greater detail. Their fractal dimensions and uncertainty exponent are calculated using the well known box counting and uncertainty methods. The results for the uncertainty exponent are compared with those obtained with yet another approach, based on the recently proposed basin entropy method. The comparison provides a test for the new approach, which we conclude that is a reliable alternative method of calculation. Very low uncertainty exponents have been obtained, indicating that some basins have extremely intermingled attractors, what may have significant influence in the experimental investigation and practical applications of the resonators. We also conclude that the observation of chaos in this system is favored by lower frequencies of excitation and comparatively small quality factors (larger dissipation).

Suggested Citation

  • Gusso, André & Viana, Ricardo L. & Mathias, Amanda C. & Caldas, Iberê L., 2019. "Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 6-16.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:6-16
    DOI: 10.1016/j.chaos.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dario Antonio & Damián H. Zanette & Daniel López, 2012. "Frequency stabilization in nonlinear micromechanical oscillators," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gusso, André & de Mello, Leandro E., 2021. "Fractal dimension of basin boundaries calculated using the basin entropy," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Ebrahimi, Reza, 2022. "Chaos in coupled lateral-longitudinal vibration of electrostatically actuated microresonators," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Luo, Shaohua & Yang, Guanci & Li, Junyang & Ouakad, Hassen M., 2022. "Dynamic analysis, circuit realization and accelerated adaptive backstepping control of the FO MEMS gyroscope," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruzziconi, Laura & Hajjaj, Amal Z., 2023. "Multiple internal resonance couplings and quasi-periodicity patterns in hybrid-shaped micromachined resonators," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Tongqiao Miao & Xin Zhou & Xuezhong Wu & Qingsong Li & Zhanqiang Hou & Xiaoping Hu & Zenghui Wang & Dingbang Xiao, 2022. "Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Axel M. Eriksson & Oriel Shoshani & Daniel López & Steven W. Shaw & David A. Czaplewski, 2023. "Controllable branching of robust response patterns in nonlinear mechanical resonators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Thibaut Detroux & Jean-Philippe Noël & Lawrence N Virgin & Gaëtan Kerschen, 2018. "Experimental study of isolas in nonlinear systems featuring modal interactions," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:6-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.